Module es.upm.fi.cig.multictbnc
Class FeatureStreamExperimentFactory
java.lang.Object
es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamExperimentFactory
Factory class for creating specific types of feature stream experiments.
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptiongetFeatureStreamImplementation
(String typeFeatureStreamProcessing, String pathFeatureStream, String nameTimeVariable, List<String> nameClassVariables, DatasetReader initialDatasetReader, DatasetReader testDatasetReader, CTBNParameterLearningAlgorithm ctbnPLA, int maxSeparatingSizeFSS, int experimentNumber, int numFeatures, boolean areModelsValidated, double sigTimeTransitionHyp, double sigStateToStateTransitionHyp) Creates an instance of a feature stream experiment based on the specified type of processing.
-
Constructor Details
-
FeatureStreamExperimentFactory
public FeatureStreamExperimentFactory()
-
-
Method Details
-
getFeatureStreamImplementation
public static FeatureStreamImplementationExperiment getFeatureStreamImplementation(String typeFeatureStreamProcessing, String pathFeatureStream, String nameTimeVariable, List<String> nameClassVariables, DatasetReader initialDatasetReader, DatasetReader testDatasetReader, CTBNParameterLearningAlgorithm ctbnPLA, int maxSeparatingSizeFSS, int experimentNumber, int numFeatures, boolean areModelsValidated, double sigTimeTransitionHyp, double sigStateToStateTransitionHyp) throws UnreadDatasetException, IOException Creates an instance of a feature stream experiment based on the specified type of processing. Different types of processing methods like 'Retraining(FSS)', 'Batch(FSS)', 'Batch', and 'Retraining' are supported, each corresponding to a different implementation strategy for handling feature streams.- Parameters:
typeFeatureStreamProcessing
- type of feature stream processing methodpathFeatureStream
- path to the feature streamnameTimeVariable
- name of the time variablenameClassVariables
- list of names of class variablesinitialDatasetReader
- reader for the initial datasettestDatasetReader
- reader for the test datasetctbnPLA
- CTBN parameter learning algorithmmaxSeparatingSizeFSS
- maximum separating size for feature subset selectionexperimentNumber
- identifier of the experimentnumFeatures
- number of features in the datasetareModelsValidated
- boolean flag indicating if models should be validatedsigTimeTransitionHyp
- significance level for time transition hypothesissigStateToStateTransitionHyp
- significance level for state-to-state transition hypothesis- Returns:
- instance of FeatureStreamImplementationExperiment
- Throws:
UnreadDatasetException
- if the dataset cannot be readIOException
- if an error occurs in file handling
-