java.lang.Object
es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamExperimentFactory

public class FeatureStreamExperimentFactory extends Object
Factory class for creating specific types of feature stream experiments.
  • Constructor Details

    • FeatureStreamExperimentFactory

      public FeatureStreamExperimentFactory()
  • Method Details

    • getFeatureStreamImplementation

      public static FeatureStreamImplementationExperiment getFeatureStreamImplementation(String typeFeatureStreamProcessing, String pathFeatureStream, String nameTimeVariable, List<String> nameClassVariables, DatasetReader initialDatasetReader, DatasetReader testDatasetReader, CTBNParameterLearningAlgorithm ctbnPLA, int maxSeparatingSizeFSS, int experimentNumber, int numFeatures, boolean areModelsValidated, double sigTimeTransitionHyp, double sigStateToStateTransitionHyp) throws UnreadDatasetException, IOException
      Creates an instance of a feature stream experiment based on the specified type of processing. Different types of processing methods like 'Retraining(FSS)', 'Batch(FSS)', 'Batch', and 'Retraining' are supported, each corresponding to a different implementation strategy for handling feature streams.
      Parameters:
      typeFeatureStreamProcessing - type of feature stream processing method
      pathFeatureStream - path to the feature stream
      nameTimeVariable - name of the time variable
      nameClassVariables - list of names of class variables
      initialDatasetReader - reader for the initial dataset
      testDatasetReader - reader for the test dataset
      ctbnPLA - CTBN parameter learning algorithm
      maxSeparatingSizeFSS - maximum separating size for feature subset selection
      experimentNumber - identifier of the experiment
      numFeatures - number of features in the dataset
      areModelsValidated - boolean flag indicating if models should be validated
      sigTimeTransitionHyp - significance level for time transition hypothesis
      sigStateToStateTransitionHyp - significance level for state-to-state transition hypothesis
      Returns:
      instance of FeatureStreamImplementationExperiment
      Throws:
      UnreadDatasetException - if the dataset cannot be read
      IOException - if an error occurs in file handling