Index
All Classes and Interfaces|All Packages|Serialized Form
A
- AbstractCSVReader - Class in es.upm.fi.cig.multictbnc.data.reader
-
Common attributes and methods for dataset readers.
- AbstractCSVReader(String) - Constructor for class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
-
Receives the path to the dataset folder and initialises the reader as out-of-date.
- AbstractExperiment - Class in es.upm.fi.cig.multictbnc.experiments
-
Abstract class for defining experiments.
- AbstractExperiment(String[]) - Constructor for class es.upm.fi.cig.multictbnc.experiments.AbstractExperiment
-
This constructor initializes an experiment with the provided configuration parameters.
- AbstractLikelihood - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores
-
Abstract class defining common variables and methods for likelihood-based scores.
- AbstractLikelihood(String) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.AbstractLikelihood
-
Receives the name of the penalisation function for the structure complexity.
- AbstractNode - Class in es.upm.fi.cig.multictbnc.nodes
-
Abstract class defining common variables and methods for any kind of node.
- AbstractNode(String) - Constructor for class es.upm.fi.cig.multictbnc.nodes.AbstractNode
-
Common initialisation for nodes.
- AbstractNode(String, boolean) - Constructor for class es.upm.fi.cig.multictbnc.nodes.AbstractNode
-
Common initialisation for nodes.
- AbstractPGM<NodeType extends Node> - Class in es.upm.fi.cig.multictbnc.models
-
Contains common attributes and methods for PGM.
- AbstractPGM() - Constructor for class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Default constructor.
- AbstractPGM(List<NodeType>) - Constructor for class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Common initialisation for PGMs.
- AbstractPGM(List<NodeType>, Dataset) - Constructor for class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Common initialisation for PGMs.
- AbstractStructureConstraints - Class in es.upm.fi.cig.multictbnc.learning.structure.constraints
-
Contains common attributes and methods for classes that determine the structure constraints of PFG.
- AbstractStructureConstraints() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraints.AbstractStructureConstraints
- adaptModel(MultiCTBNC<CPTNode, CIMNode>, Dataset) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftAdaptiveMethod
-
Abstract method for adapting the model based on the provided data batch.
- adaptModel(MultiCTBNC<CPTNode, CIMNode>, Dataset) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftGloballyAdaptiveMethod
-
Adapts the provided MultiCTBNC model based on the new data batch.
- adaptModel(MultiCTBNC<CPTNode, CIMNode>, Dataset) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftLocallyAdaptiveMethod
-
Adapts the provided MultiCTBNC model based on the new data batch.
- add(T) - Method in class es.upm.fi.cig.multictbnc.data.representation.SlidingWindow
-
Adds a new object to the sliding window.
- addEvent(String, String) - Method in class es.upm.fi.cig.multictbnc.data.representation.State
-
Adds an event (a variable taking a certain value) to the state.
- addEvents(Map<String, String>) - Method in class es.upm.fi.cig.multictbnc.data.representation.State
-
Adds events to the state.
- addFeatureVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Registers the name of a feature in the dataset to allow the inclusion of sequences that contain it.
- addFeatureVariable(String, Dataset) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Add a new feature variable to the dataset given the sequences containing the transitions of the variable.
- addFeatureVariable(String, Sequence) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Adds a new feature variable to the sequence by copying the values from another sequence with the same number of observations.
- addHorizontalValueMarker(double) - Method in class es.upm.fi.cig.multictbnc.gui.XYLineChart
-
Adds a horizontal value marker to the chart.
- addNodes(List<NodeType>, boolean) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- addNodes(List<NodeType>, boolean) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Adds the provided nodes to the PGM.
- addSepSetAndNodeAsParents(PGM<? extends Node>, CIMNode, List<Integer>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
-
Defines a node, which is being studied as a possible parent node, and a separating set as parents of an evaluated node.
- addSepSetAsParents(PGM<? extends Node>, CIMNode, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
-
Defines a separating set as parents of an evaluated node.
- addSequence(Sequence) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Receives a
Sequence
to add it to the dataset. - addSequence(List<String[]>) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Receives a list of Strings (a sequence) from which a
Sequence
is created and adds it to the dataset. - addSequence(List<String[]>, String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Receives a list of Strings (a sequence) and the path of the file from which it was extracted.
- addSeries(String...) - Method in class es.upm.fi.cig.multictbnc.gui.XYLineChart
-
Adds new series to the chart.
- addVerticalValueMarker(double) - Method in class es.upm.fi.cig.multictbnc.gui.XYLineChart
-
Adds a vertical value marker to the chart.
- areParametersEstimated() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- areParametersEstimated() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
- areParametersEstimated() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Returns true if all the parameters were estimated.
- areParametersEstimated() - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
- areParametersEstimated() - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
- areParametersEstimated() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Returns true if the parameters of the node were estimated.
- arrayToQueue(String[]) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Converts an array of strings into a queue of strings.
- AverageLocalLogLikelihood - Class in es.upm.fi.cig.multictbnc.conceptdriftdetection
-
This class provides a method to compute the average local log-likelihood of each node of a Multi-CTBNC.
- AverageLocalLogLikelihood(String) - Constructor for class es.upm.fi.cig.multictbnc.conceptdriftdetection.AverageLocalLogLikelihood
-
Constructs an instance of AverageLocalLogLikelihood with a specified penalisation function.
B
- BN<NodeType extends Node> - Class in es.upm.fi.cig.multictbnc.models
-
Implements a Bayesian network (BN).
- BN(Dataset, List<String>, BNLearningAlgorithms, StructureConstraints, Class<NodeType>) - Constructor for class es.upm.fi.cig.multictbnc.models.BN
-
Initialises a Bayesian network by receiving a dataset, a list of variables to use and the algorithms for parameter and structure learning.
- BN(BN<NodeType>, boolean) - Constructor for class es.upm.fi.cig.multictbnc.models.BN
-
Constructor to clone a Bayesian network.
- BN(List<NodeType>) - Constructor for class es.upm.fi.cig.multictbnc.models.BN
-
Initialises a Bayesian network by receiving a list of nodes.
- BN(List<NodeType>, Dataset) - Constructor for class es.upm.fi.cig.multictbnc.models.BN
-
Initialises a Bayesian network by receiving a list of nodes and a dataset.
- BNBayesianEstimation - Class in es.upm.fi.cig.multictbnc.learning.parameters.bn
-
Implements the Bayesian estimation to estimate the parameters of a BN.
- BNBayesianEstimation(double) - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNBayesianEstimation
-
Receives the hyperparameter of the Dirichlet prior distribution over the parameters (i.e. imaginary counts).
- BNBayesianScore - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn
-
Implements the Bayesian Dirichlet equivalence metric for Bayesian networks with nodes that have CPTs (Heckerman et al., 1995).
- BNBayesianScore() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNBayesianScore
- BNHillClimbing - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation
-
Implements hill climbing algorithm for BNs.
- BNHillClimbing(BNScoreFunction) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
-
Constructor that receives the score function to optimise.
- BNHillClimbingHybridAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing
-
Implements the maximisation phase (hill climbing algorithm) of the hybrid structure learning algorithm for Bayesian networks.
- BNHillClimbingHybridAlgorithm(BNScoreFunction, boolean[][]) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing.BNHillClimbingHybridAlgorithm
-
Initialises the algorithm by proving a score function and a skeleton of the Bayesian network.
- BNHybridStructureLearningAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.structure.hybrid
-
Implements the hybrid structure learning algorithm for Bayesian networks.
- BNHybridStructureLearningAlgorithm(BNScoreFunction, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.hybrid.BNHybridStructureLearningAlgorithm
-
Initialises the hybrid structure learning algorithm receiving a significance value and a score function.
- BNLearningAlgorithms - Class in es.upm.fi.cig.multictbnc.learning
-
Stores the parameter and structure learning algorithms for a Bayesian network.
- BNLearningAlgorithms(BNParameterLearningAlgorithm, StructureLearningAlgorithm) - Constructor for class es.upm.fi.cig.multictbnc.learning.BNLearningAlgorithms
-
Receives the learning algorithms for the parameters and the structure.
- BNLogLikelihood - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn
-
Implements the log-likelihood score for Bayesian networks with nodes that have CPTs.
- BNLogLikelihood(String) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNLogLikelihood
-
Receives the name of the penalisation function for the structure complexity.
- BNMaximumLikelihoodEstimation - Class in es.upm.fi.cig.multictbnc.learning.parameters.bn
-
Maximum likelihood estimation of BN parameters.
- BNMaximumLikelihoodEstimation() - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNMaximumLikelihoodEstimation
- BNParameterLearningAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.parameters.bn
-
Defines methods for parameter learning algorithms of discrete Bayesian networks.
- BNParameterLearningAlgorithm() - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
- BNParameterLearningAlgorithmFactory - Class in es.upm.fi.cig.multictbnc.learning.parameters.bn
-
Builds the specified parameter learning algorithm for a BN.
- BNParameterLearningAlgorithmFactory() - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithmFactory
- BNScoreFunction - Interface in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn
-
Interface used to define scores for Bayesian networks.
- BNSufficientStatistics - Class in es.upm.fi.cig.multictbnc.learning.parameters.bn
-
Compute and store the sufficient statistics of a discrete BN node.
- BNSufficientStatistics(double) - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNSufficientStatistics
-
Constructs a
BNSufficientStatistics
by receiving the hyperparameter of the Dirichlet prior distribution. - BNTabuSearch - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch
-
Implements the tabu search algorithm for Bayesian networks.
- BNTabuSearch(BNScoreFunction, int, int) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.BNTabuSearch
-
Initialises the tabu search algorithm by proving a score function and a tabu list size.
- buildCompleteStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
-
Returns the adjacency matrix of a PGM with a complete structure.
- buildCompleteStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
-
Returns the adjacency matrix of a PGM with a complete structure.
C
- call() - Method in class es.upm.fi.cig.multictbnc.tasks.ClassificationTask
- call() - Method in class es.upm.fi.cig.multictbnc.tasks.EvaluationTask
- call() - Method in class es.upm.fi.cig.multictbnc.tasks.TrainingTask
- cartesianProduct(List<List<State>>) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Given a list of lists with the possible states of some variables, this method returns the Cartesian product between each of the possible states of each variable.
- changeDatasetReader() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
A dataset reader was selected in the comboBox.
- changeDatasetReaderClassification() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
A dataset reader for the classification dataset was selected in the comboBox.
- changeDatasetReaderClassificationStrategy() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
An strategy for the extraction of sequences to classify was selected.
- changeDatasetReaderStrategy() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
An strategy for the extraction of sequences was selected.
- changeModel() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
A model was selected in the comboBox.
- changeParameterLearningAlgBN() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
A parameter learning algorithm for BNs was selected in the comboBox.
- changeParameterLearningAlgCTBN() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
A parameter learning algorithm for CTBNs was selected in the comboBox.
- changeScoreFunction() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
A score function was selected in the comboBox.
- changeStructureLearningAlg() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
A structure learning algorithm was selected in the comboBox.
- checkVarianceFeatures(boolean) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Removes from the dataset those feature variables with zero variance.
- CIMNode - Class in es.upm.fi.cig.multictbnc.nodes
-
Extends the DiscreteNode class to store a CIM and the sufficient statistics for a CTBN.
- CIMNode(CIMNode) - Constructor for class es.upm.fi.cig.multictbnc.nodes.CIMNode
-
Constructor to clone a CIM node.
- CIMNode(String, List<String>) - Constructor for class es.upm.fi.cig.multictbnc.nodes.CIMNode
-
Constructs a CIMNode given its name and possible states.
- CIMNode(String, List<String>, boolean) - Constructor for class es.upm.fi.cig.multictbnc.nodes.CIMNode
-
Initialises a CIMNode given its name, possible states and if it is a class variable.
- ClassificationService - Class in es.upm.fi.cig.multictbnc.services
-
Service that creates and manages a
ClassificaionTask
. - ClassificationService() - Constructor for class es.upm.fi.cig.multictbnc.services.ClassificationService
- ClassificationTask - Class in es.upm.fi.cig.multictbnc.tasks
-
Task that allows executing the classification of sequences in a background thread.
- ClassificationTask(MultiCTBNC<?, ?>, DatasetReader, boolean) - Constructor for class es.upm.fi.cig.multictbnc.tasks.ClassificationTask
-
Constructs a
ClassificationTask
that receives anMultiCTBNC
model and adatasetReader
. - Classifier - Interface in es.upm.fi.cig.multictbnc.classification
-
Interface representing classification models.
- ClassifierFactory - Class in es.upm.fi.cig.multictbnc.classification
-
Provides static methods for the creation of classifiers.
- ClassifierFactory() - Constructor for class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
- classify() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
Performs classification over a provided dataset with a previously trained model.
- clearParentAndChildrenSets() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- clearParentAndChildrenSets() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
- clearParentAndChildrenSets() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Remove the set of parents and children of the node.
- clone2DArray(double[][]) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Creates a deep copy of a two-dimensional double array.
- clone3DArray(double[][][]) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Creates a deep copy of a three-dimensional double array.
- close() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamImplementationExperiment
-
Closes the resources used for the experiment.
- close() - Method in class es.upm.fi.cig.multictbnc.writers.performance.ExcelExperimentsWriter
- close() - Method in class es.upm.fi.cig.multictbnc.writers.performance.MetricsWriter
-
Closes the writer.
- combination(List<type>, int) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Returns all possible combinations of size 'k' of a given list of elements.
- compute(BN<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNBayesianScore
- compute(BN<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNLogLikelihood
-
Computes the (penalised) log-likelihood score for a discrete Bayesian network.
- compute(BN<? extends Node>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNScoreFunction
-
Computes the score of a Bayesian network.
- compute(CTBN<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNBayesianScore
- compute(CTBN<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNConditionalLogLikelihood
-
Computes the (penalised) conditional log-likelihood score of a discrete continuous-time Bayesian network.
- compute(CTBN<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNLogLikelihood
- compute(CTBN<? extends Node>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNScoreFunction
-
Computes the score for a continuous-time Bayesian network.
- compute(CTBN<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNBayesianScore
- compute(CTBN<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNConditionalLogLikelihood
- compute(CTBN<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNLogLikelihood
-
Computes the (penalised) log-likelihood score at a given node of a discrete continuous-time Bayesian network.
- compute(CTBN<? extends Node>, int) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNScoreFunction
-
Computes the score of a continuous-time Bayesian network at a given node.
- compute(MultiCTBNC<CPTNode, CIMNode>, Dataset, List<String>) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.AverageLocalLogLikelihood
- compute(MultiCTBNC<CPTNode, CIMNode>, Dataset, List<String>) - Method in interface es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftScore
-
Compute the score over each node of the provided
MultiCTBNC
. - compute(Map<String, Double>) - Method in interface es.upm.fi.cig.multictbnc.performance.Metric
-
Computes the value of the evaluation metric given a Map containing a confusion matrix.
- computeScore(BN<? extends Node>, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
-
Computes the score of a structure given an adjacency matrix.
- computeScore(CTBN<? extends Node>, int, boolean[][], Map<Long, Double>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
-
Computes the score at a certain node given an adjacency matrix.
- computeSufficientStatistics(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNSufficientStatistics
-
Computes the sufficient statistics of a node in a BN.
- computeSufficientStatistics(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
-
Computes the sufficient statistics of a CTBN node.
- computeSufficientStatistics(DiscreteStateNode, Dataset) - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.SufficientStatistics
-
Computes the sufficient statistics of a discrete node.
- computeSufficientStatistics(List<Integer>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- computeSufficientStatistics(List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Computes the sufficient statistics for the nodes whose indexes are specified.
- ConceptDriftAdaptiveMethod - Class in es.upm.fi.cig.multictbnc.conceptdriftdetection
-
Abstract class representing a concept drift adaptive method.
- ConceptDriftAdaptiveMethod(ConceptDriftScore, List<String>, double, boolean, String) - Constructor for class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftAdaptiveMethod
-
Initializes the concept drift adaptive method with the specified parameters.
- ConceptDriftGloballyAdaptiveMethod - Class in es.upm.fi.cig.multictbnc.conceptdriftdetection
-
This class implements a concept drift adaptive method that operates globally on a MultiCTBNC model.
- ConceptDriftGloballyAdaptiveMethod(List<String>, ConceptDriftScore, double, double, boolean, int, boolean, String) - Constructor for class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftGloballyAdaptiveMethod
-
Initializes the globally adaptive concept drift method with specified parameters.
- ConceptDriftLocallyAdaptiveMethod - Class in es.upm.fi.cig.multictbnc.conceptdriftdetection
-
This class implements a concept drift adaptive method that operates locally on each node of a MultiCTBNC model.
- ConceptDriftLocallyAdaptiveMethod(List<String>, ConceptDriftScore, double, double, boolean, int, boolean, String) - Constructor for class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftLocallyAdaptiveMethod
-
Initializes the locally adaptive concept drift method with specified parameters.
- ConceptDriftScore - Interface in es.upm.fi.cig.multictbnc.conceptdriftdetection
-
Interface representing scores that can be computed locally on each node of a MultiCTBNC and used to detect concept drifts in a given data batch.
- conditionalIndependenceTest(CIMNode, CPTNode, List<CIMNode>) - Static method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
-
Tests whether a feature and a class variables are conditionally independent given a certain separating set.
- ConInd - Class in es.upm.fi.cig.multictbnc.fss
-
This class implements the ConInd online feature subset selection algorithm from Yu et al. 2018.
- ConInd(List<String>, ParameterLearningAlgorithm, int, double, double) - Constructor for class es.upm.fi.cig.multictbnc.fss.ConInd
-
Constructs a
ConInd
object. - ConsoleExperimentsWriter - Class in es.upm.fi.cig.multictbnc.writers.performance
-
Allows writing the results of the experiments through the standard output stream.
- ConsoleExperimentsWriter() - Constructor for class es.upm.fi.cig.multictbnc.writers.performance.ConsoleExperimentsWriter
- containsFeature(String) - Method in class es.upm.fi.cig.multictbnc.fss.SubsetSelectedFeatures
-
Checks if a specific feature is included in the selected subset.
- Controller - Class in es.upm.fi.cig.multictbnc.gui
-
Controller used to initialise the elements of the GUI and allow the interaction between the logic of the application and the GUI.
- Controller() - Constructor for class es.upm.fi.cig.multictbnc.gui.Controller
- ControllerUtil - Class in es.upm.fi.cig.multictbnc.util
-
Utility class with methods related to controlling the UI behaviour.
- CPTNode - Class in es.upm.fi.cig.multictbnc.nodes
-
Extends the DiscreteNode class to store a CPT and the sufficient statistics for a BN.
- CPTNode(CPTNode) - Constructor for class es.upm.fi.cig.multictbnc.nodes.CPTNode
-
Constructor that receives a
CPTNode
and clones it. - CPTNode(String, List<String>) - Constructor for class es.upm.fi.cig.multictbnc.nodes.CPTNode
-
Constructor that receives the name of the variable and its possible states.
- CPTNode(String, List<String>, boolean) - Constructor for class es.upm.fi.cig.multictbnc.nodes.CPTNode
-
Constructor that receives the name of the variable, a list of strings with its possible states and if it is a class variable.
- createEmptyNode(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.NodeFactory
-
Creates a node from a given one without storing its parameters or sufficient statistics.
- createFactory(Class<NodeType>) - Static method in class es.upm.fi.cig.multictbnc.nodes.NodeFactory
-
Constructs a
NodeFactory
for nodes whoseClass
is passed as a parameter. - createNode(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.NodeFactory
-
Creates a node from a given one.
- createNode(String, Dataset) - Method in class es.upm.fi.cig.multictbnc.nodes.NodeFactory
-
Creates a node given the name of its variable and the dataset where it appears.
- createNodes(List<NodeType>) - Method in class es.upm.fi.cig.multictbnc.nodes.NodeFactory
-
Creates a list of nodes with the same attributes as those provided.
- createTask() - Method in class es.upm.fi.cig.multictbnc.services.ClassificationService
- createTask() - Method in class es.upm.fi.cig.multictbnc.services.EvaluationService
- createTask() - Method in class es.upm.fi.cig.multictbnc.services.TrainingService
- createXYLineChart(String, String, String, int[], String...) - Static method in class es.upm.fi.cig.multictbnc.util.UserInterfaceUtil
-
Creates an XY line chart with the specified parameters.
- CrossValidationBinaryRelevanceMethod - Class in es.upm.fi.cig.multictbnc.performance
-
Implements a cross-validation method used to learn one CTBNC for each class variable and merge the results.
- CrossValidationBinaryRelevanceMethod(DatasetReader, int, boolean, boolean, long) - Constructor for class es.upm.fi.cig.multictbnc.performance.CrossValidationBinaryRelevanceMethod
-
Constructor for cross-validation method.
- CrossValidationMethod - Class in es.upm.fi.cig.multictbnc.performance
-
Implements cross-validation method.
- CrossValidationMethod(DatasetReader, int, boolean, boolean, Long) - Constructor for class es.upm.fi.cig.multictbnc.performance.CrossValidationMethod
-
Constructor for cross-validation method.
- CTBN<NodeType extends Node> - Class in es.upm.fi.cig.multictbnc.models
-
Implements a continuous-time Bayesian network (CTBN).
- CTBN(Dataset, List<String>, CTBNLearningAlgorithms, StructureConstraints, BN<? extends Node>, Class<NodeType>) - Constructor for class es.upm.fi.cig.multictbnc.models.CTBN
-
Initialises a continuous-time Bayesian network given a dataset, the list of variables to use and the algorithms for parameter and structure learning.
- CTBN(Dataset, List<String>, CTBNLearningAlgorithms, StructureConstraints, Class<NodeType>) - Constructor for class es.upm.fi.cig.multictbnc.models.CTBN
-
Initialises a continuous-time Bayesian network given a dataset, the list of variables to use and the algorithms for parameter and structure learning.
- CTBN(CTBN<NodeType>, boolean) - Constructor for class es.upm.fi.cig.multictbnc.models.CTBN
-
Constructor to clone a continuous-time Bayesian network.
- CTBN(CTBN<NodeType>, Dataset) - Constructor for class es.upm.fi.cig.multictbnc.models.CTBN
-
Constructor to clone a continuous-time Bayesian network.
- CTBN(List<NodeType>, BN<? extends Node>) - Constructor for class es.upm.fi.cig.multictbnc.models.CTBN
-
Initialises a continuous-time Bayesian network by receiving a list of nodes and a Bayesian network modelling the class subgraph of a Multi-CTBNC.
- CTBN(List<NodeType>, BN<? extends Node>, Dataset) - Constructor for class es.upm.fi.cig.multictbnc.models.CTBN
-
Initialises a continuous-time Bayesian network by receiving a list of nodes, a Bayesian network modelling the class subgraph of a Multi-CTBNC and a training dataset.
- CTBNBayesianEstimation - Class in es.upm.fi.cig.multictbnc.learning.parameters.ctbn
-
Bayesian parameter estimation for a discrete CTBN.
- CTBNBayesianEstimation(double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNBayesianEstimation
-
Constructs a
CTBNBayesianEstimation
for the Bayesian estimation of the parameters of a discrete CTBN. - CTBNBayesianScore - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn
-
Implements the Bayesian Dirichlet equivalence metric for CTBNs with nodes that have CIMs (Nodelman et al., 2003).
- CTBNBayesianScore() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNBayesianScore
- CTBNConditionalLogLikelihood - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn
-
Implements the conditional log-likelihood score for Multi-CTBNCs with nodes that have CPTs and CIMs to define its bridge and feature subgraph (represented by a CTBN).
- CTBNConditionalLogLikelihood(String) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNConditionalLogLikelihood
-
Receives the name of the penalisation function for the structure complexity.
- CTBNHillClimbing - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation
-
Implements hill climbing algorithm for CTBNs.
- CTBNHillClimbing(CTBNScoreFunction) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
-
Constructor that receives the score function to optimise.
- CTBNHillClimbingHybridAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing
-
Implements the maximisation phase (hill climbing algorithm) of the hybrid structure learning algorithm for continuous-time Bayesian networks.
- CTBNHillClimbingHybridAlgorithm(CTBNScoreFunction, boolean[][]) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing.CTBNHillClimbingHybridAlgorithm
-
Initialises the algorithm by proving a score function and an initial adjacency matrix for the continuous-time Bayesian network.
- CTBNHillClimbingIndividual - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation
-
Implements hill climbing algorithm for CTBNs.
- CTBNHillClimbingIndividual(CTBNScoreFunction) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
-
Constructor that receives the score function to optimise.
- CTBNHybridStructureLearningAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.structure.hybrid
-
Implements the hybrid structure learning algorithm for continuous-time Bayesian networks.
- CTBNHybridStructureLearningAlgorithm(CTBNScoreFunction, int, double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
-
Initialises the hybrid structure learning algorithm receiving significance values, a score function and the maximum size of the separating sets.
- CTBNLearningAlgorithms - Class in es.upm.fi.cig.multictbnc.learning
-
Stores the parameter and structure learning algorithms for a continuous-time Bayesian network.
- CTBNLearningAlgorithms(CTBNParameterLearningAlgorithm, StructureLearningAlgorithm) - Constructor for class es.upm.fi.cig.multictbnc.learning.CTBNLearningAlgorithms
-
Receives the learning algorithms for the parameters and the structure.
- CTBNLogLikelihood - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn
-
Implements the log-likelihood score for CTBNs with nodes that have CIMs.
- CTBNLogLikelihood(String) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNLogLikelihood
-
Receives the name of the penalisation function for the structure complexity.
- CTBNMaximumLikelihoodEstimation - Class in es.upm.fi.cig.multictbnc.learning.parameters.ctbn
-
Maximum likelihood estimation of CTBN parameters.
- CTBNMaximumLikelihoodEstimation() - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNMaximumLikelihoodEstimation
- CTBNParameterLearningAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.parameters.ctbn
-
Define methods for parameter learning algorithms of continuous-time Bayesian networks.
- CTBNParameterLearningAlgorithm() - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
- CTBNParameterLearningAlgorithmFactory - Class in es.upm.fi.cig.multictbnc.learning.parameters.ctbn
-
Builds the specified parameter learning algorithm for a CTBN.
- CTBNParameterLearningAlgorithmFactory() - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithmFactory
- CTBNScoreFunction - Interface in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn
-
Interface used to define scores for continuous-time Bayesian networks.
- CTBNSufficientStatistics - Class in es.upm.fi.cig.multictbnc.learning.parameters.ctbn
-
Computes and stores the sufficient statistics of a discrete CTBN node.
- CTBNSufficientStatistics(double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
-
Receives the hyperparameters of the Dirichlet prior distribution over the parameters that are necessary for Bayesian estimation.
- CTBNTabuSearchIndividual - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch
-
Implements the tabu search algorithm for continuous-time Bayesian networks.
- CTBNTabuSearchIndividual(CTBNScoreFunction, int, int) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.CTBNTabuSearchIndividual
-
Initialises the tabu search algorithm by proving a score function and a tabu list size.
- CTPC - Class in es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC
-
Implementation of the CTPC algorithm for Multi-CTBNCs.
- CTPC(double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
-
Initialises the CTPC algorithm by providing the significance levels to be used.
- CTPCHybridAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC
-
Implements the restriction phase (CTPC algorithm) of the hybrid structure learning algorithm.
- CTPCHybridAlgorithm(int, double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC.CTPCHybridAlgorithm
-
Initialises the algorithm by proving a significance level.
D
- DAG - Class in es.upm.fi.cig.multictbnc.learning.structure.constraints.BN
-
Defines the restrictions of a general directed acyclic graph.
- DAG() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraints.BN.DAG
- DAG_maxK_MultiCTBNC<NodeTypeBN extends Node,
NodeTypeCTBN extends Node> - Class in es.upm.fi.cig.multictbnc.models.submodels -
Implements a Multi-CTBNC where the class subgraph is formed by a Bayesian network, while the feature subgraph is a K-dependence continuous-time Bayesian network, i.e., the feature nodes are limited to have K parents (apart of the class variables).
- DAG_maxK_MultiCTBNC(BNLearningAlgorithms, CTBNLearningAlgorithms, int, Class<NodeTypeBN>, Class<NodeTypeCTBN>) - Constructor for class es.upm.fi.cig.multictbnc.models.submodels.DAG_maxK_MultiCTBNC
-
Constructs a
DAG_maxK_MultiCTBNC
by receiving the learning algorithms for Bayesian networks and continuous-time Bayesian networks and the maximum number of parents of the feature variables (apart from the class variables). - DataSampler - Class in es.upm.fi.cig.multictbnc.sampling
-
Implements methods for the generation and writing of datasets sampled from Multi-CTBNCs.
- DataSampler() - Constructor for class es.upm.fi.cig.multictbnc.sampling.DataSampler
- Dataset - Class in es.upm.fi.cig.multictbnc.data.representation
-
Represents a time series dataset, which stores sequences and provides methods to access and modify their information.
- Dataset(String) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Creates an empty dataset with the name of the time variable.
- Dataset(String, List<String>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Creates an empty dataset with the names of the time variable and class variables.
- Dataset(List<Sequence>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Creates a dataset with a list of sequences.
- datasetClassificationModified() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
The information of the dataset used for classification was modified, so its
DatasetReader
is warned. - datasetModified() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
The information of the dataset for training/evaluation was modified, so its
DatasetReader
is warned. - DatasetReader - Interface in es.upm.fi.cig.multictbnc.data.reader
-
Interface for classes that read datasets.
- DatasetReaderFactory - Class in es.upm.fi.cig.multictbnc.data.reader
-
Creates dataset readers.
- DatasetReaderFactory() - Constructor for class es.upm.fi.cig.multictbnc.data.reader.DatasetReaderFactory
- DataStreamExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments
-
Represents an experiment for evaluating continuous-time Bayesian network classifiers on streaming data.
- DataStreamExperiment() - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
- DataStreamMultipleCSVReader - Class in es.upm.fi.cig.multictbnc.data.reader
-
The class is designed for reading and processing streaming data from multiple CSV files.
- DataStreamMultipleCSVReader(String, String, List<String>) - Constructor for class es.upm.fi.cig.multictbnc.data.reader.DataStreamMultipleCSVReader
-
This constructor prepares the reader to process CSV files from the specified folder.
- detectChange(double) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.PageHinkleyTest
-
Detects concept drifts based on a new observation.
- detectNewFeatureVariables(File) - Method in class es.upm.fi.cig.multictbnc.data.reader.DataStreamMultipleCSVReader
-
Extracts the names of the variables from a CSV file.
- Digraph - Class in es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC
-
Specifies the structure restrictions of a CTBN.
- Digraph() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.Digraph
- DiscreteStateNode - Class in es.upm.fi.cig.multictbnc.nodes
-
Abstract class defining common variables and methods for discrete nodes.
- DiscreteStateNode(String, List<String>) - Constructor for class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
-
Initialises a discrete node given a list of states.
- DiscreteStateNode(String, List<String>, boolean) - Constructor for class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
-
Initialises a discrete node specifying if the node is for a class variable or a feature.
- display() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- display() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Displays the probabilistic graphical model.
- display(String) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- display(String) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Displays the probabilistic graphical model.
- display(String, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- display(String, List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Displays the probabilistic graphical model.
- displayModel(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.ValidationMethod
-
Displays the model obtained with the validation method.
- displayResults(Map<String, Double>) - Method in class es.upm.fi.cig.multictbnc.performance.ValidationMethod
-
Displays the results obtained with the validation method.
E
- Empty_digraph_MultiCTBNC<NodeTypeBN extends Node,
NodeTypeCTBN extends Node> - Class in es.upm.fi.cig.multictbnc.models.submodels -
Implements a Multi-CTBNC with an empty class subgraph.
- Empty_digraph_MultiCTBNC(BNLearningAlgorithms, CTBNLearningAlgorithms, Class<NodeTypeBN>, Class<NodeTypeCTBN>) - Constructor for class es.upm.fi.cig.multictbnc.models.submodels.Empty_digraph_MultiCTBNC
-
Constructs a
Empty_digraph_MultiCTBNC
by receiving the learning algorithms for Bayesian networks and continuous-time Bayesian networks. - Empty_maxK_MultiCTBNC<NodeTypeBN extends Node,
NodeTypeCTBN extends Node> - Class in es.upm.fi.cig.multictbnc.models.submodels -
Implements a Multi-CTBNC with an empty class subgraph and a K-dependence continuous-time Bayesian network for the feature subgraph, i.e., the feature nodes are limited to having K parents (apart of the class variables).
- Empty_maxK_MultiCTBNC(BNLearningAlgorithms, CTBNLearningAlgorithms, int, Class<NodeTypeBN>, Class<NodeTypeCTBN>) - Constructor for class es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC
-
Constructs a
Empty_maxK_Multi-CTBNC
by receiving the learning algorithms for Bayesian networks and continuous-time Bayesian networks and the maximum number of parents of the features (apart of the class variables). - EmptyBN - Class in es.upm.fi.cig.multictbnc.learning.structure.constraints.BN
-
It only allows the creation of empty BNs.
- EmptyBN() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraints.BN.EmptyBN
- equals(Object) - Method in class es.upm.fi.cig.multictbnc.data.representation.State
- equals(Object) - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- ErroneousSequenceException - Exception in es.upm.fi.cig.multictbnc.exceptions
-
Thrown when a valid sequence could not be created with the provided data.
- ErroneousSequenceException(String) - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.ErroneousSequenceException
-
Constructs a
ErroneousSequenceException
with the specified detail message. - ErroneousValueException - Exception in es.upm.fi.cig.multictbnc.exceptions
-
Thrown when an error occurs due to an incorrect value provided by the user.
- ErroneousValueException(String) - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.ErroneousValueException
-
Constructs a
ErroneousValue
with the specified detail message. - es.upm.fi.cig.multictbnc - module es.upm.fi.cig.multictbnc
- es.upm.fi.cig.multictbnc - package es.upm.fi.cig.multictbnc
- es.upm.fi.cig.multictbnc.classification - package es.upm.fi.cig.multictbnc.classification
- es.upm.fi.cig.multictbnc.conceptdriftdetection - package es.upm.fi.cig.multictbnc.conceptdriftdetection
- es.upm.fi.cig.multictbnc.data.reader - package es.upm.fi.cig.multictbnc.data.reader
- es.upm.fi.cig.multictbnc.data.representation - package es.upm.fi.cig.multictbnc.data.representation
- es.upm.fi.cig.multictbnc.data.writer - package es.upm.fi.cig.multictbnc.data.writer
- es.upm.fi.cig.multictbnc.exceptions - package es.upm.fi.cig.multictbnc.exceptions
- es.upm.fi.cig.multictbnc.experiments - package es.upm.fi.cig.multictbnc.experiments
- es.upm.fi.cig.multictbnc.experiments.implementationsexperiments - package es.upm.fi.cig.multictbnc.experiments.implementationsexperiments
- es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments - package es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
- es.upm.fi.cig.multictbnc.fss - package es.upm.fi.cig.multictbnc.fss
- es.upm.fi.cig.multictbnc.gui - package es.upm.fi.cig.multictbnc.gui
- es.upm.fi.cig.multictbnc.learning - package es.upm.fi.cig.multictbnc.learning
- es.upm.fi.cig.multictbnc.learning.parameters - package es.upm.fi.cig.multictbnc.learning.parameters
- es.upm.fi.cig.multictbnc.learning.parameters.bn - package es.upm.fi.cig.multictbnc.learning.parameters.bn
- es.upm.fi.cig.multictbnc.learning.parameters.ctbn - package es.upm.fi.cig.multictbnc.learning.parameters.ctbn
- es.upm.fi.cig.multictbnc.learning.structure - package es.upm.fi.cig.multictbnc.learning.structure
- es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC - package es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC
- es.upm.fi.cig.multictbnc.learning.structure.constraints - package es.upm.fi.cig.multictbnc.learning.structure.constraints
- es.upm.fi.cig.multictbnc.learning.structure.constraints.BN - package es.upm.fi.cig.multictbnc.learning.structure.constraints.BN
- es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC - package es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC
- es.upm.fi.cig.multictbnc.learning.structure.hybrid - package es.upm.fi.cig.multictbnc.learning.structure.hybrid
- es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing - package es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing
- es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC - package es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC
- es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing - package es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing
- es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation - package es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation
- es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores - package es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores
- es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn - package es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn
- es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn - package es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn
- es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch - package es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch
- es.upm.fi.cig.multictbnc.models - package es.upm.fi.cig.multictbnc.models
- es.upm.fi.cig.multictbnc.models.submodels - package es.upm.fi.cig.multictbnc.models.submodels
- es.upm.fi.cig.multictbnc.nodes - package es.upm.fi.cig.multictbnc.nodes
- es.upm.fi.cig.multictbnc.performance - package es.upm.fi.cig.multictbnc.performance
- es.upm.fi.cig.multictbnc.sampling - package es.upm.fi.cig.multictbnc.sampling
- es.upm.fi.cig.multictbnc.services - package es.upm.fi.cig.multictbnc.services
- es.upm.fi.cig.multictbnc.tasks - package es.upm.fi.cig.multictbnc.tasks
- es.upm.fi.cig.multictbnc.util - package es.upm.fi.cig.multictbnc.util
- es.upm.fi.cig.multictbnc.writers.classification - package es.upm.fi.cig.multictbnc.writers.classification
- es.upm.fi.cig.multictbnc.writers.performance - package es.upm.fi.cig.multictbnc.writers.performance
- estimateLogLikelihood() - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
- estimateLogLikelihood() - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
- estimateLogLikelihood() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Returns the local log-likelihood for the node.
- estimateParameters(CIMNode) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
-
Estimates the parameters for a given node from its computed sufficient statistics.
- evaluate() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
Evaluates the selected model.
- evaluate(Prediction[], Dataset) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
-
Uses different performance metrics to evaluate how good the given predictions are.
- evaluate(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.CrossValidationBinaryRelevanceMethod
-
Evaluates the performance of the specified model using cross-validation.
- evaluate(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.CrossValidationMethod
-
Evaluates the performance of the specified model using cross-validation.
- evaluate(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.HoldOutMethod
-
Evaluates the performance of the specified model using hold-out validation.
- evaluate(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.TestDatasetBinaryRelevanceMethod
- evaluate(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.TestDatasetMethod
- evaluate(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.ValidationMethod
-
Evaluates the performance of the specified model and returns the results.
- evaluate(MultiCTBNC<?, ?>, double) - Method in class es.upm.fi.cig.multictbnc.performance.CrossValidationBinaryRelevanceMethod
- evaluate(MultiCTBNC<?, ?>, double) - Method in class es.upm.fi.cig.multictbnc.performance.CrossValidationMethod
- evaluate(MultiCTBNC<?, ?>, double) - Method in class es.upm.fi.cig.multictbnc.performance.HoldOutMethod
- evaluate(MultiCTBNC<?, ?>, double) - Method in class es.upm.fi.cig.multictbnc.performance.TestDatasetBinaryRelevanceMethod
- evaluate(MultiCTBNC<?, ?>, double) - Method in class es.upm.fi.cig.multictbnc.performance.TestDatasetMethod
- evaluate(MultiCTBNC<?, ?>, double) - Method in class es.upm.fi.cig.multictbnc.performance.ValidationMethod
-
Evaluates the performance of the specified model and returns the results.
- EvaluationService - Class in es.upm.fi.cig.multictbnc.services
-
Service that creates and manages an
EvaluationTask
. - EvaluationService() - Constructor for class es.upm.fi.cig.multictbnc.services.EvaluationService
- EvaluationTask - Class in es.upm.fi.cig.multictbnc.tasks
-
Task that allows executing the training and evaluation of a model in a background thread.
- EvaluationTask(ValidationMethod, MultiCTBNC<?, ?>) - Constructor for class es.upm.fi.cig.multictbnc.tasks.EvaluationTask
-
Constructs an
EvaluationTask
that receives aValidationMethod
and anMultiCTBNC
model. - ExcelExperimentsWriter - Class in es.upm.fi.cig.multictbnc.writers.performance
-
Allows writing the results of the experiments in an Excel file.
- ExcelExperimentsWriter(List<String>, List<String>, List<String>, List<String>, BNParameterLearningAlgorithm, CTBNParameterLearningAlgorithm, String, double, double, double, List<Long>, String) - Constructor for class es.upm.fi.cig.multictbnc.writers.performance.ExcelExperimentsWriter
-
Initialises the writer.
- ExcelExperimentsWriter(List<String>, List<String>, List<String>, List<String>, List<String>, BNParameterLearningAlgorithm, CTBNParameterLearningAlgorithm, String, String, List<Long>, String) - Constructor for class es.upm.fi.cig.multictbnc.writers.performance.ExcelExperimentsWriter
-
Initialises the writer.
- execute() - Method in interface es.upm.fi.cig.multictbnc.experiments.Experiment
-
Executes the experiment.
- execute() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.LearningStreamExperiment
- execute() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.ModelComparisonExperiment
- execute() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.StructureLearningAlgorithmsComparisonExperiment
- execute(MultiCTBNC<CPTNode, CIMNode>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamAsStaticDatasetExperiment
- execute(MultiCTBNC<CPTNode, CIMNode>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamImplementationExperiment
-
Executes the experiment.
- execute(MultiCTBNC<CPTNode, CIMNode>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithFSSExperiment
- execute(MultiCTBNC<CPTNode, CIMNode>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithFSSWithoutUpdatingExperiment
- execute(MultiCTBNC<CPTNode, CIMNode>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithoutFSSExperiment
- execute(String, Dataset) - Method in class es.upm.fi.cig.multictbnc.fss.ConInd
- execute(String, Dataset) - Method in interface es.upm.fi.cig.multictbnc.fss.OnlineFeatureSubsetSelection
-
Executes the feature subset selection algorithm for a newly arrived feature variable in a given data batch.
- executeExperiment(String, double) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
-
Executes a single data stream experiment for a specified path and detection threshold.
- executeExperiment(String, String) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.FeatureStreamExperiment
-
Executes a single feature stream experiment for a specified path.
- executeExperiment(String, String, double, double) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.FeatureStreamExperiment
-
Executes a single feature stream experiment.
- Experiment - Interface in es.upm.fi.cig.multictbnc.experiments
-
Represents an experiment that can be executed.
- ExperimentFactory - Class in es.upm.fi.cig.multictbnc.experiments
-
A factory class for creating instances of experiments based on provided arguments.
- ExperimentFactory() - Constructor for class es.upm.fi.cig.multictbnc.experiments.ExperimentFactory
- extractDecimal(String, double) - Static method in class es.upm.fi.cig.multictbnc.util.ControllerUtil
-
Receives an
String
and tries to convert it to adouble
. - extractFirstLong(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Returns the first
long
in aString
. - extractFixedSequences(Dataset, List<String[]>) - Method in class es.upm.fi.cig.multictbnc.data.reader.SingleCSVReader
-
Extracts sequences that have the same maximum length and add them to the specified dataset.
- extractFixedSequencesSameCC(Dataset, List<String[]>) - Method in class es.upm.fi.cig.multictbnc.data.reader.SingleCSVReader
-
Extracts sequences that have the same maximum length and add them to the specified dataset.
- extractInt(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Returns an
int
from aString
. - extractInteger(String, int) - Static method in class es.upm.fi.cig.multictbnc.util.ControllerUtil
-
Receives an
String
and tries to convert it to anInteger
. - extractLong(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Returns a
long
from aString
. - extractPathExperimentDatasets(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Returns the path to the datasets given the folder of a experiment.
- extractVariableNames(File) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
-
Extracts the names of the variables given in some CSV files.
- extremeProbability() - Static method in class es.upm.fi.cig.multictbnc.util.ProbabilityUtil
-
Returns a probability between 0 or 0.3, or between 0.7 and 1.
F
- f1score(Map<String, Double>) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
-
Compute the F1 score from a
Map
containing a confusion matrix. - failed() - Method in class es.upm.fi.cig.multictbnc.tasks.ClassificationTask
- failed() - Method in class es.upm.fi.cig.multictbnc.tasks.EvaluationTask
- failed() - Method in class es.upm.fi.cig.multictbnc.tasks.TrainingTask
- FeatureStreamAsStaticDatasetExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
-
Implements an experiment where a feature stream is treated as a static dataset.
- FeatureStreamAsStaticDatasetExperiment(String, String, List<String>, DatasetReader, DatasetReader, int, int, boolean) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamAsStaticDatasetExperiment
-
Constructs a FeatureStreamAsStaticDatasetExperiment with the specified parameters.
- FeatureStreamExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments
-
Represents an experiment for evaluating continuous-time Bayesian network classifiers on feature streams.
- FeatureStreamExperiment() - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.FeatureStreamExperiment
- FeatureStreamExperimentFactory - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
-
Factory class for creating specific types of feature stream experiments.
- FeatureStreamExperimentFactory() - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamExperimentFactory
- FeatureStreamImplementationExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
-
Abstract class representing an implementation of an experiment with feature streams.
- FeatureStreamImplementationExperiment(String, String, List<String>, DatasetReader, DatasetReader, int, int, boolean) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamImplementationExperiment
-
Constructs a FeatureStreamImplementationExperiment with the specified parameters.
- FeatureStreamMultipleCSVReader - Class in es.upm.fi.cig.multictbnc.data.reader
-
Class responsible for reading multiple CSV files representing a feature stream.
- FeatureStreamMultipleCSVReader(String, Dataset, String) - Constructor for class es.upm.fi.cig.multictbnc.data.reader.FeatureStreamMultipleCSVReader
-
Constructs a FeatureStreamMultipleCSVReader with the specified path to the feature stream, a current dataset and the name of the time variable.
- FeatureStreamWithFSSExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
-
Represents an experiment that processes a feature stream with online feature subset selection using a MultiCTBNC.
- FeatureStreamWithFSSExperiment(String, String, List<String>, DatasetReader, DatasetReader, CTBNParameterLearningAlgorithm, int, int, int, boolean, double, double) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithFSSExperiment
-
Initializes a FeatureStreamWithFSSExperiment with the provided configuration parameters.
- FeatureStreamWithFSSWithoutUpdatingExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
-
Represents an experiment for processing a feature stream dataset with online feature subset selection without updating the model.
- FeatureStreamWithFSSWithoutUpdatingExperiment(String, String, List<String>, DatasetReader, DatasetReader, CTBNParameterLearningAlgorithm, int, int, int, boolean, double, double) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithFSSWithoutUpdatingExperiment
-
Initializes a FeatureStreamWithFSSWithoutUpdatingExperiment with the provided configuration parameters.
- FeatureStreamWithoutFSSExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
-
Represents an experiment for processing a feature stream dataset without online feature subset selection but with model updates.
- FeatureStreamWithoutFSSExperiment(String, String, List<String>, DatasetReader, DatasetReader, int, int, boolean) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithoutFSSExperiment
-
Initializes a FeatureStreamWithoutFSSExperiment with the provided configuration parameters.
- featureSubsetSelectionGivenClassVariable(String, Dataset) - Method in class es.upm.fi.cig.multictbnc.fss.ConInd
-
Performs feature subset selection given a new feature variable.
- fill2dArray(double[][], double) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Fills a two-dimensional
double
array with the provideddouble
. - fill3dArray(double[][][], double) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Fills a three-dimensional
double
array with the provideddouble
. - filter(List<T>, List<T>) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Returns the elements of a list "a" except those in "b".
- filter(List<T>, T) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Returns the elements of a list "a" except "b".
- findBestNeighbor(BN<? extends Node>, HillClimbingSolution, double[], boolean[][][], String) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing.BNHillClimbingHybridAlgorithm
- findBestNeighbor(BN<? extends Node>, HillClimbingSolution, double[], boolean[][][], String) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
-
Finds the best neighbour of the adjacency matrix "bestStructure" given an operation to perform (addition, deletion or reversal of arcs).
- findBestNeighbor(BN<? extends Node>, HillClimbingSolution, double[], boolean[][][], String) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.BNTabuSearch
- findBestNeighbor(CTBN<? extends Node>, int, boolean[][], Map<Long, Double>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing.CTBNHillClimbingHybridAlgorithm
- findBestNeighbor(CTBN<? extends Node>, int, boolean[][], Map<Long, Double>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
-
Finds the best neighbour for a CTBN node.
- findBestNeighbor(CTBN<? extends Node>, int, boolean[][], Map<Long, Double>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.CTBNTabuSearchIndividual
- findStructure() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.FirstChoiceHillClimbing
- findStructure() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
-
Performs greedy Hill climbing to find a better structure than the initial one.
- findStructure() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.RandomRestartHillClimbing
- findStructure(int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.FirstChoiceHillClimbing
- findStructure(int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
-
Performs greedy Hill climbing to find a better local structure for a given node.
- findStructure(int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.RandomRestartHillClimbing
- findStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing.BNHillClimbingHybridAlgorithm
- findStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
- findStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
- findStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
- findStructure(PGM<? extends Node>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.HillClimbingImplementation
-
Finds a structure for a given PGM.
- findStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.BNTabuSearch
- findStructure(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
- findStructure(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
- findStructure(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
- findStructure(PGM<? extends Node>, int) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.HillClimbingImplementation
-
Finds the local structure of a given node of a PGM.
- findStructure(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
- findStructure(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
- findStructure(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
- findStructure(PGM<? extends Node>, List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.HillClimbingImplementation
-
Finds the local structure of some given nodes of a PGM.
- findStructure(List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.FirstChoiceHillClimbing
- findStructure(List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
-
Performs greedy Hill climbing to find a better local structure for some given nodes.
- findStructure(List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.RandomRestartHillClimbing
- findStructureNode(CTBN<? extends Node>, int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
-
Optimises the function score to find the parent set of a given node.
- findStructureNode(CTBN<? extends Node>, int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.CTBNTabuSearchIndividual
- FirstChoiceHillClimbing - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing
-
Implements first-choice Hill Climbing.
- FirstChoiceHillClimbing(HillClimbingImplementation) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.FirstChoiceHillClimbing
-
Constructs a
FirstChoiceHillClimbing
by receiving the implementation of the hill climbing algorithm (for a Bayesian network, continuous-time Bayesian network...).
G
- generateDataset(MultiCTBNC<CPTNode, CIMNode>, int, double, boolean, String) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
-
Sample a dataset from the provided model.
- generateDataset(MultiCTBNC<CPTNode, CIMNode>, int, double, double, double, String) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
-
Sample a dataset from the provided model.
- generateModel(int, int, int, int, double, double, double, int, int, int, boolean, boolean, boolean[][]) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
-
Generates a Multi-CTBNC that can be used to sample data.
- generateModifiedModel(MultiCTBNC<CPTNode, CIMNode>, int, boolean, int, int, int, double, String) - Static method in class es.upm.fi.cig.multictbnc.sampling.MainDataStreamSampling.MainDataStreamSamplingFX
-
Generates a modified Multi-CTBNC to simulate concept drift.
- generateRandomCIM(CIMNode, double, double) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
-
Generate a uniformly distributed random conditional intensity matrix for a node of a continuous-time Bayesian network.
- generateRandomCIMs(CTBN<CIMNode>, double, double) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
-
Generate uniformly distributed random conditional intensity matrices for a continuous-time Bayesian network.
- generateRandomCPT(CPTNode, boolean) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
-
Generate an uniformly distributed random conditional probability table for a Bayesian network node.
- generateRandomCPTs(BN<CPTNode>, boolean) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
-
Generate uniformly distributed random conditional probability tables for a Bayesian network.
- generateTrainAndTest() - Method in class es.upm.fi.cig.multictbnc.performance.HoldOutMethod
-
Generates a training and a test dataset.
- getAdjacencyMatrix() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
-
Returns the adjacency matrix of the structure.
- getAdjacencyMatrix() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Returns the adjacency matrix of the PGM by analysing the parents of each node.
- getAdjacencyMatrix() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Returns the adjacency matrix.
- getAlgorithm(String, Double) - Static method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithmFactory
-
Build the specified parameter learning algorithm.
- getAlgorithm(String, Double, Double) - Static method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithmFactory
-
Builds the specified parameter learning algorithm.
- getAlgorithmBN(String, Map<String, String>) - Static method in class es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithmFactory
-
Builds the specified structure learning algorithm for Bayesian networks.
- getAlgorithmCTBN(String, Map<String, String>) - Static method in class es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithmFactory
-
Builds the specified structure learning algorithm for continuous-time Bayesian networks.
- getAvailableDatasetReaders() - Static method in class es.upm.fi.cig.multictbnc.data.reader.DatasetReaderFactory
-
Returns the name of available dataset readers.
- getAvailableLearningMethods() - Static method in class es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithmFactory
-
Returns the name of available optimisation methods.
- getAvailableModels() - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
-
Returns a list with the currently available classifiers.
- getAvailableStrategies() - Static method in class es.upm.fi.cig.multictbnc.data.reader.DatasetReaderFactory
-
Returns the name of available strategies for the extraction of sequences.
- getBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns the Bayesian network used to model the class subgraph of the Multi-CTBNC.
- getBnClassSubgraph() - Method in class es.upm.fi.cig.multictbnc.models.CTBN
-
Returns the class subgraph (Bayesian network).
- getChildren() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- getChildren() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Returns the children of the node.
- getClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns a Map object with the class variables' names and values.
- getCP(int, int) - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
-
Returns the conditional probability of a state of the node given the state of the parents.
- getCPT() - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
-
Returns the conditional probability table (CPT) of the node.
- getCTBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns the continuous-time Bayesian network used to model the bridge and feature subgraphs of the Multi-CTBNC.
- getDataset() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Returns the dataset used to learn the PGM.
- getDatasetReader(String, String, int) - Static method in class es.upm.fi.cig.multictbnc.data.reader.DatasetReaderFactory
-
Generates the correct dataset reader for the given dataset path.
- getEdgesPGM(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
-
Retrieves all possible edges between nodes of a PGM.
- getEntryLargestValue(Map<k, v>) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Returns entry with the largest value of a
Map
. - getEvents() - Method in class es.upm.fi.cig.multictbnc.data.representation.State
-
Returns the events of the state.
- getExecutionTime() - Method in class es.upm.fi.cig.multictbnc.fss.SubsetSelectedFeatures
-
Retrieves the execution time of the FSS algorithm.
- getExperiment(String...) - Static method in class es.upm.fi.cig.multictbnc.experiments.ExperimentFactory
-
Gets an instance of an experiment based on the provided arguments.
- getExperimentConfig() - Method in class es.upm.fi.cig.multictbnc.experiments.AbstractExperiment
-
Retrieves the queue of experiment configuration parameters.
- getFeatures() - Method in class es.upm.fi.cig.multictbnc.fss.SubsetSelectedFeatures
-
Provides the list of features selected by the FSS algorithm.
- getFeatureStreamImplementation(String, String, String, List<String>, DatasetReader, DatasetReader, CTBNParameterLearningAlgorithm, int, int, int, boolean, double, double) - Static method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamExperimentFactory
-
Creates an instance of a feature stream experiment based on the specified type of processing.
- getFilenameResults() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamAsStaticDatasetExperiment
- getFilenameResults() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamImplementationExperiment
-
Provides the filename for storing results.
- getFilenameResults() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithFSSExperiment
- getFilenameResults() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithFSSWithoutUpdatingExperiment
- getFilenameResults() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithoutFSSExperiment
- getFilePath() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the path of the file from which the sequence was extracted.
- getHyperparameters() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Returns the hyperparameters of the model the user sets.
- getHyperparameters() - Method in class es.upm.fi.cig.multictbnc.models.submodels.DAG_maxK_MultiCTBNC
- getHyperparameters() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNBayesianEstimation
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNMaximumLikelihoodEstimation
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNBayesianEstimation
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNMaximumLikelihoodEstimation
- getIdentifier() - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.ParameterLearningAlgorithm
-
Returns a unique identifier for the parameter learning algorithm.
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.BNHybridStructureLearningAlgorithm
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
- getIdentifier() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.HillClimbingImplementation
-
Returns a unique identifier for the hill climbing-based algorithm.
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.RandomRestartHillClimbing
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNBayesianScore
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNLogLikelihood
- getIdentifier() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNScoreFunction
-
Gets an identifier for the score function.
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNBayesianScore
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNConditionalLogLikelihood
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNLogLikelihood
- getIdentifier() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNScoreFunction
-
Gets an identifier for the score function.
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.BNTabuSearch
- getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.CTBNTabuSearchIndividual
- getIdentifier() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithm
-
Returns a unique identifier for the structure learning algorithm.
- getIdxFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Retrieves the mapping of feature variable names to their indexes within the sequence.
- getIdxFeatureVariables(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
-
Returns the indexes of the feature nodes in a PGM.
- getIdxFeatureVariables(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.OnlineMarkovBlanketCTPC
-
Retrieves the index nodes representing feature variables from a given list of index nodes.
- getIdxParentsNode(int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
-
Returns the indexes of a node's parents.
- getIdxState() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
-
Gets the index of the current state of the node.
- getIdxStateParents() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
-
Gets the index for the current state of the node's parents.
- getIdxStateParents(List<String>) - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
-
Gets the index for the current state of the specified parents of the node.
- getIndexLargestValue(double[]) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Returns the index of the largest value in an array.
- getIndexNodeByName(String) - Method in class es.upm.fi.cig.multictbnc.nodes.NodeIndexer
-
Returns the index of a node whose name is provided.
- getIndexNodes() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- getIndexNodes() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Returns the indexes of the nodes.
- getIndexNodes() - Method in class es.upm.fi.cig.multictbnc.nodes.NodeIndexer
-
Returns the indexes of all the nodes.
- getIndexOfNode(Node) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- getIndexOfNode(Node) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Returns the index of the provided node.
- getInfoScoreFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
- getInfoScoreFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
- getInfoScoreFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
- getInfoScoreFunction() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.HillClimbingImplementation
-
Returns a
Map
with the name of the score function that is optimised and the name of the applied penalisation function (if any). - getInitialStructure() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Return the name of the initial structure of the model.
- getLabelPowerset() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Returns a multi-class dataset generated from the multidimensional dataset.
- getLastChangedNodes() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftAdaptiveMethod
-
Retrieves the list of nodes that were last identified as having undergone concept drift.
- getLastChangedNodes() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftGloballyAdaptiveMethod
- getLastChangedNodes() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftLocallyAdaptiveMethod
- getLastExecutionYieldAnyChange() - Method in class es.upm.fi.cig.multictbnc.fss.ConInd
-
Returns whether the last execution of the feature subset selection algorithm resulted in any changes.
- getLastExecutionYieldAnyChange() - Method in interface es.upm.fi.cig.multictbnc.fss.OnlineFeatureSubsetSelection
-
Returns a boolean indicating whether the last execution of the feature subset selection algorithm resulted in any changes to the selected feature subset.
- getLearningAlgsBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns learning algorithms for class subgraph (Bayesian network).
- getLearningAlgsCTBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns learning algorithms for bridge and features subgraphs (continuous time Bayesian network).
- getLearntNodes() - Method in class es.upm.fi.cig.multictbnc.models.BN
-
Returns the nodes with the learnt parameters.
- getMaxValue(double...) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Returns the maximum value between those passed as parameters
- getMeanGlobalAccuracy() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
-
Retrieves the mean global accuracy across all processed data batches.
- getMeanGlobalBrierScore() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
-
Retrieves the mean global Brier score across all processed data batches.
- getMeanMacroAveragedF1Score() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
-
Retrieves the mean macro-averaged F1 score across all processed data batches.
- getMeanMeanAccuracy() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
-
Retrieves the average mean accuracy across all processed data batches.
- getMeanMicroAveragedF1Score() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
-
Retrieves the mean micro-averaged F1 score across all processed data batches.
- getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.BN
- getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.CTBN
- getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
- getModelIdentifier() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Returns a
String
that identifies the model. - getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.submodels.DAG_maxK_MultiCTBNC
- getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_digraph_MultiCTBNC
- getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC
- getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.submodels.MultiCTNBC
- getModifiedArcs() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
-
Returns the last arc modified.
- getMultiCTBNC() - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
-
Generates a
Multi-CTBNC
including some default nodes and algorithms for the learning of its parameters and structure. - getMultiCTBNC(String, BNLearningAlgorithms, CTBNLearningAlgorithms) - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
-
Builds the specified classifier.
- getMultiCTBNC(String, BNLearningAlgorithms, CTBNLearningAlgorithms, Map<String, String>) - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
-
Builds the specified classifier with the provided hyperparameters.
- getMultiCTBNC(String, BNLearningAlgorithms, CTBNLearningAlgorithms, Map<String, String>, Class<NodeTypeBN>, Class<NodeTypeCTBN>) - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
-
Builds the specified classifier with the provided hyperparameters.
- getMultiCTBNCLearnedWithCTPC() - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
-
Generates a
Multi-CTBNC
including some default nodes and algorithms for the learning of its parameters and structure. - getMultiCTBNCLearnedWithHybridAlgorithm() - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
-
Generates a
Multi-CTBNC
including some default nodes and algorithms for the learning of its parameters and structure. - getMultiCTBNCLearnedWithMBCTPC() - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
-
Generates a
Multi-CTBNC
including some default nodes and algorithms for the learning of its parameters and structure. - getMx() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
-
Returns the sufficient statistic with the number of times the variable leaves every state (i.e., the state changes) while its parents have certain values.
- getMxHyperparameter() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
-
Returns the value of the hyperparameter with the number of 'imaginary' transitions that occurred from a certain state before seeing the data.
- getMxy() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
-
Returns the sufficient statistic with the number of times the variable transition from a certain state to another while its parents have certain values
- getMxyHyperparameter() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
-
Returns the value of the hyperparameter with the number of 'imaginary' transitions that occurred from a certain state to another before seeing the data.
- getName() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- getName() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Returns the name of the node.
- getNameAllVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Returns the name of all the variables, including the time variable.
- getNameAllVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the name of all the variables, including the time variable.
- getNameClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
- getNameClassVariables() - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Returns the name of the class variables.
- getNameClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Returns the name of the class variables.
- getNameClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the names of the class variables.
- getNameFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
- getNameFeatureVariables() - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Returns the name of the feature variables.
- getNameFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Returns the names of the feature variables.
- getNameFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the names of the feature variables.
- getNameFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns the names of the feature variables.
- getNameLastFeatureReceived() - Method in class es.upm.fi.cig.multictbnc.data.reader.FeatureStreamMultipleCSVReader
-
Retrieves the name of the last feature variable received from the feature stream.
- getNameMethod() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNBayesianEstimation
- getNameMethod() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNMaximumLikelihoodEstimation
- getNameMethod() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNBayesianEstimation
- getNameMethod() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNMaximumLikelihoodEstimation
- getNameMethod() - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.ParameterLearningAlgorithm
-
Gets the name of the method to learn the parameters.
- getNamePenalisationFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.AbstractLikelihood
-
Returns the name of the penalisation function.
- getNamePenalisationFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNBayesianScore
- getNamePenalisationFunction() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNScoreFunction
-
Gets the name of the penalisation applied (if any) to the score function.
- getNamePenalisationFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNBayesianScore
- getNamePenalisationFunction() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNScoreFunction
-
Gets the name of the penalisation applied (if any) to the score function.
- getNamesNodesByIndex(List<Integer>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- getNamesNodesByIndex(List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Return the names of the nodes whose indexes are given.
- getNameTimeVariable() - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
- getNameTimeVariable() - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Returns the name of the time variable.
- getNameTimeVariable() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Returns the name of the time variable.
- getNameTimeVariable() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the name of the time variable.
- getNameVariables() - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
- getNameVariables() - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Returns the names of all the variables of the dataset, including those that are not used.
- getNameVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Returns the name of all the variables except the time variable.
- getNameVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.State
-
Returns the names of the variables collected by the
State
object. - getNameVariables() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Returns the names of the variables of the PGM.
- getNodeByIndex(int) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- getNodeByIndex(int) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Obtains the node (feature or class variable) with a certain index.
- getNodeByIndex(int) - Method in class es.upm.fi.cig.multictbnc.nodes.NodeIndexer
-
Returns the name of a node whose index is provided.
- getNodeByName(String) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- getNodeByName(String) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Returns the node whose variable name is given.
- getNodeClass() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Returns the type of the nodes.
- getNodeFactory() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Returns a
NodeFactory
for the nodes of the PGM. - getNodeIndexer() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Returns the node indexer of the model.
- getNodeIndexer() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Returns the node indexer used by the PGM.
- getNodes() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- getNodes() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
- getNodes() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Returns all the nodes in the model.
- getNodesClassVariables() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns the list of nodes for the class variables.
- getNodesCTBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns the nodes of the continuous-time Bayesian network modelling the feature and bridge subgraphs of the Multi-CTBNC.
- getNodesCTBNInMarkovBlanketClassVariables() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns the nodes of the continuous-time Bayesian network modelling the feature and bridge subgraphs of the Multi-CTBNC, which are in the Markov blaket of at least one class variable.
- getNodesFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns the list of nodes for the feature variables.
- getNumClassAndFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the total number of class and feature variables in the sequence.
- getNumClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Returns the number of class variables.
- getNumClassVariables() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns the number of nodes for the class variables.
- getNumDataPoints() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Returns the number of data points.
- getNumEdgesTested() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
-
Returns the number of edges that have been evaluated so far.
- getNumFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns the number of nodes for the feature variables.
- getNumNodes() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- getNumNodes() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Returns the number of nodes.
- getNumObservation() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Returns the number of observations in the dataset, i.e., the number of observations that occur in all the sequences.
- getNumObservations() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the number of observations that the sequence contains.
- getNumParents() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- getNumParents() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Returns the number of parents of the node.
- getNumStates() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
-
Returns the number of possible states of the node.
- getNumStatesParents() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
-
Returns the number of possible states of the parents of the node.
- getNumTimesModelUpdated() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
-
Retrieves the number of times the model was updated during the experiment.
- getNx() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNSufficientStatistics
-
Returns the sufficient statistics of the node.
- getNxHyperparameter() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNSufficientStatistics
-
Returns the hyperparameter value of the Dirichlet prior distribution.
- getOxy() - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
-
Return matrix with the probabilities of the variable leaving a certain state for another one while their parents take a certain instantiation
- getOxy(int, int, int) - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
-
Returns the probability of the variable leaving a state for a certain one given the state of its parents
- getPageHinkleyValue() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.PageHinkleyTest
-
Returns the last Page Hinkley value calculated.
- getParameterLearningAlg() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- getParameterLearningAlg() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Returns the algorithm that is used to learn the parameters of the PGM.
- getParameterLearningAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.BNLearningAlgorithms
-
Returns the parameter learning algorithm for a BN.
- getParameterLearningAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.CTBNLearningAlgorithms
-
Returns the parameter learning algorithm for a CTBN.
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNBayesianEstimation
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNMaximumLikelihoodEstimation
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNBayesianEstimation
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNMaximumLikelihoodEstimation
- getParametersAlgorithm() - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.ParameterLearningAlgorithm
-
Returns the parameters that are used by the algorithm.
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.BNHybridStructureLearningAlgorithm
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
- getParametersAlgorithm() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.HillClimbingImplementation
-
Returns the parameters that are used by the hill climbing implementation.
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.RandomRestartHillClimbing
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.BNTabuSearch
- getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.CTBNTabuSearchIndividual
- getParametersAlgorithm() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithm
-
Returns the parameters that are used by the algorithm.
- getParents() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- getParents() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Returns the parents of the node.
- getPathsExperiments() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
-
Retrieves the array of dataset paths for the experiments.
- getPenalisationFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.AbstractLikelihood
-
Returns the name of the penalisation function.
- getPossibleStatesVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Returns the possible states of the specified variable.
- getPredictedClasses() - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
-
Returns the prediction.
- getPredictionTime() - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
-
Returns the prediction time.
- getProbabilities() - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
-
Returns the probabilities of every possible class configuration.
- getProbabilityPrediction() - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
-
Returns the probability of the prediction.
- getQx() - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
-
Return matrix with the intensities of the variables leaving a certain state while their parents take a certain instantiation.
- getQx(int, int) - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
-
Returns the intensity of the variable leaving a certain state given the state of its parents
- getRandomElements(List<Integer>, int) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Get
k
random elements from an {\@code Integer} list. - getResults() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftAdaptiveMethod
-
Returns a
String
describing the results of the last concept drift detection. - getResults() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftGloballyAdaptiveMethod
- getResults() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftLocallyAdaptiveMethod
- getScore() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
-
Returns the score of the structure found.
- getSequences() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Returns the sequences of the dataset.
- getState() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
-
Gets the state of the node.
- getStates() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
-
Returns a list of the states that the node can take.
- getStates(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Gets all the possible states of a specific variable.
- getStatesClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Gets the states of the class variables for each of the sequences.
- getStatesVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Gets the possible states of all variables.
- getStructureConstraints() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Returns the constraints that the PGM needs to meet.
- getStructureConstraintsBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns the structure constraints for the BN.
- getStructureConstraintsBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.DAG_maxK_MultiCTBNC
- getStructureConstraintsBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_digraph_MultiCTBNC
- getStructureConstraintsBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC
- getStructureConstraintsBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.MultiCTNBC
- getStructureConstraintsCTBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns the structure constraints for the CTBN.
- getStructureConstraintsCTBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.DAG_maxK_MultiCTBNC
- getStructureConstraintsCTBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC
- getStructureConstraintsCTBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.MultiCTNBC
- getStructureLearningAlg() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Returns the algorithm used to learn the structure of the PGM.
- getStructureLearningAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.BNLearningAlgorithms
-
Returns the structure learning algorithm for a BN.
- getStructureLearningAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.CTBNLearningAlgorithms
-
Returns the structure learning algorithm for a CTBN.
- getSubsets(List<type>, int, type) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Retrieves the possible subsets of a certain size from a given set of elements without including a certain element.
- getSufficientStatistics() - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
-
Gets the sufficient statistics of a CIM node.
- getSufficientStatistics() - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
-
Returns sufficient statistics of the node.
- getSufficientStatisticsNode(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNBayesianEstimation
- getSufficientStatisticsNode(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNMaximumLikelihoodEstimation
- getSufficientStatisticsNode(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
-
Returns the sufficient statistics of a
DiscreteNode
for a givenDataset
. - getSufficientStatisticsNode(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNBayesianEstimation
- getSufficientStatisticsNode(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNMaximumLikelihoodEstimation
- getSufficientStatisticsNode(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
-
Returns the sufficient statistics of a
DiscreteNode
for a givenDataset
. - getTimeValue(int) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the value of the time variable in a given observation.
- getTimeValues() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the values of the time variable in the sequence.
- getTopologicalOrdering() - Method in class es.upm.fi.cig.multictbnc.models.BN
-
Obtains the topological ordering of the nodes with the Kahn's algorithm.
- getTraining() - Method in class es.upm.fi.cig.multictbnc.performance.HoldOutMethod
-
Returns the training dataset.
- getTx() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
-
Returns the sufficient statistic with the time that the variable stays in every state, while its parents take different values.
- getTxHyperparameter() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
-
Returns the value of the hyperparameter with the 'imaginary' time that was spent in a certain state before seeing the data.
- getType() - Method in class es.upm.fi.cig.multictbnc.models.BN
- getType() - Method in class es.upm.fi.cig.multictbnc.models.CTBN
- getType() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
- getType() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Provides the type of PGM.
- getType() - Method in class es.upm.fi.cig.multictbnc.models.submodels.DAG_maxK_MultiCTBNC
- getType() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_digraph_MultiCTBNC
- getType() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC
- getType() - Method in class es.upm.fi.cig.multictbnc.models.submodels.MultiCTNBC
- getTypeNodeClassVariable() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
NodeFactory Returns the type of the class variable nodes.
- getTypeNodeFeature() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Returns the type of the feature nodes.
- getUpdatingTime() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftAdaptiveMethod
-
Returns the time taken for the last update of the model.
- getUpdatingTime() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftLocallyAdaptiveMethod
- getValidationMethod(String, DatasetReader, DatasetReader, double, int, boolean, boolean, Long) - Static method in class es.upm.fi.cig.multictbnc.performance.ValidationMethodFactory
-
Builds the specified validation method.
- getValueClassVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the values of the specified class variable.
- getValueFeatureVariable(int, String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the value of a certain feature variable for a given observation.
- getValues() - Method in class es.upm.fi.cig.multictbnc.data.representation.State
-
Returns all the values in the State.
- getValuesFeatureVariables(int) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the values of all feature variables for a given observation.
- getValueVariable(int, String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Returns the value of a certain variable for a given observation.
- getValueVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.State
-
Returns the value for a specific variable.
- getVariablesValues() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Retrieves the array of values for all variables (excluding the time variable) for each observation in the sequence.
- globalAccuracy(Prediction[], Dataset) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
-
Computes the global accuracy, which is the ratio between the number of instances that were correctly classified for all the class variables and the total number of instances.
- globalBrierScore(Prediction[], Dataset) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
-
The Brier score measures the performance of probabilistic predictions.
H
- hasChildren() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- hasChildren() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Specifies if the node has children.
- hasClassVariableAsParent() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- hasClassVariableAsParent() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Specifies if the node has a class variable as parent.
- hasClassVariableAsSpouse() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- hasClassVariableAsSpouse() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Specifies if the node has a class variable as spouse.
- hashCode() - Method in class es.upm.fi.cig.multictbnc.data.representation.State
- hashCode() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- hasParents() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- hasParents() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Specifies if the node has parents.
- HillClimbing - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing
-
Implements common attributes and methods for hill climbing algorithms.
- HillClimbing() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
- HillClimbingImplementation - Interface in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation
-
Defines an interface for different implementations of the hill climbing algorithm.
- HillClimbingSolution - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing
-
Class used to contain the solution given by the hill climbing algorithms.
- HillClimbingSolution() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
- HITONPC - Class in es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC
-
Implementation of the HITON-PC algorithm.
- HITONPC(double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.HITONPC
-
Constructor that initialises the HITON-PC algorithm by proving the significance level used.
- HoldOutMethod - Class in es.upm.fi.cig.multictbnc.performance
-
Implements hold-out validation method.
- HoldOutMethod(DatasetReader, double, boolean, boolean, Long) - Constructor for class es.upm.fi.cig.multictbnc.performance.HoldOutMethod
-
Constructs a
HoldOut
by receiving aDatasetReader
, the size of the training set and if the data should be shuffled.
I
- increaseNumEdgesTested() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
-
Increases the number of evaluated edges in one.
- increaseNumEdgesTested() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
-
Increases the number of evaluated edges in one.
- initialiazeStatesClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Retrieves the states of the class variables and stores them in a
Map
. - initialiseModel(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- initialiseModel(Dataset) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Sets the dataset that will be used to estimate the structure and parameters of the model and creates its nodes.
- initialiseService(MultiCTBNC<?, ?>, DatasetReader) - Method in class es.upm.fi.cig.multictbnc.services.TrainingService
-
Initialises the
TrainingService
receiving the model to learn and thea DatasetReader
to read the training dataset. - initialiseService(MultiCTBNC<?, ?>, DatasetReader, boolean) - Method in class es.upm.fi.cig.multictbnc.services.ClassificationService
-
Initialises the
ClassificationService
by receiving the learntMultiCTBNC
model and aDatasetReader
to read the dataset to classify. - initialiseService(ValidationMethod, MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.services.EvaluationService
-
Initialises the
EvaluationService
by receiving aValidationMethod
and aMultiCTBNC
model. - initialiseStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.AbstractStructureConstraints
- initialiseStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.BN.EmptyBN
- initialiseStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.NaiveBayes
- initialiseStructure(PGM<? extends Node>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.constraints.StructureConstraints
-
The structure of the PGM is initialised.
- initialiseSufficientStatistics(DiscreteStateNode) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
-
Initialises the structures to store the sufficient statistics of the node.
- initialize() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
Initialises the controller.
- isArrayEmpty(T[]) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Checks if an array is empty.
- isClassVariable() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- isClassVariable() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Specifies if the node is a class variable.
- isClassVariable(boolean) - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- isClassVariable(boolean) - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Defines if the node is a class variable.
- isDataArriving() - Method in class es.upm.fi.cig.multictbnc.data.reader.DataStreamMultipleCSVReader
-
Checks if there is more data to be read.
- isDataArriving() - Method in class es.upm.fi.cig.multictbnc.data.reader.FeatureStreamMultipleCSVReader
-
Checks whether there is more feature data arriving in the feature stream.
- isDatasetOutdated() - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
- isDatasetOutdated() - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Indicates if the dataset is out-of-date.
- isDecomposable() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNBayesianScore
- isDecomposable() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNConditionalLogLikelihood
- isDecomposable() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNLogLikelihood
- isDecomposable() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNScoreFunction
-
Determines if the score is decomposable.
- isDisconnected() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- isDisconnected() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Specifies if the node is disconnected, i.e., it has neither parents or children.
- isInMarkovBlanketClassVariable() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- isInMarkovBlanketClassVariable() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Specifies if the node is in the Markov blanket of at least one class variable.
- isScoreImproved(HillClimbingSolution, boolean[][][], int, double) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
-
Checks if a solution given by the hill climbing algorithm in a certain iteration is better than the current solution.
- isScoreImproved(HillClimbingSolution, boolean[][][], int, double) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.BNTabuSearch
- isStructureLegal(boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Determines if the structure is legal.
- isStructureLegal(boolean[][]) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Checks if a structure is legal for the PGM.
- isStructureLegal(boolean[][], NodeIndexer<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.BN.DAG
-
Checks if the structure (given by an adjacencyMatrix) is legal for a Bayesian network without restrictions.
- isStructureLegal(boolean[][], NodeIndexer<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.BN.EmptyBN
- isStructureLegal(boolean[][], NodeIndexer<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.Digraph
- isStructureLegal(boolean[][], NodeIndexer<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.MaxKCTBNC
- isStructureLegal(boolean[][], NodeIndexer<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.NaiveBayes
- isStructureLegal(boolean[][], NodeIndexer<? extends Node>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.constraints.StructureConstraints
-
Determines if the structure of a PGM is legal.
K
- kroneckerDelta(String[], String[]) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Kronecker delta function.
L
- learn() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- learn() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Learns the structure and parameters of the model.
- learn(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- learn(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
- learn(Dataset) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Learns the structure and parameters of the model from a given dataset.
- learn(Dataset, int) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- learn(Dataset, int) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Learns the parameters and parent set of a model's node from a given dataset.
- learn(Dataset, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- learn(Dataset, List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Learns the parameters and parent set of some nodes of the model from a given dataset.
- learn(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
- learn(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.MarkovBlanketCTPC
- learn(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
- learn(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.BNHybridStructureLearningAlgorithm
- learn(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
- learn(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
- learn(PGM<? extends Node>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithm
-
Learns the structure of a certain PGM.
- learn(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
- learn(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
- learn(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.BNHybridStructureLearningAlgorithm
- learn(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
- learn(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
- learn(PGM<? extends Node>, int) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithm
-
Learn the local structure of a certain node of a PGM.
- learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
- learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.HITONPC
- learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.OnlineMarkovBlanketCTPC
- learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
- learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.BNHybridStructureLearningAlgorithm
- learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
- learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
- learn(PGM<? extends Node>, List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithm
-
Learns the local structure of certain nodes of a PGM.
- learn(Node, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
- learn(Node, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
- learn(Node, Dataset) - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.ParameterLearningAlgorithm
-
Learns the parameters of a certain node of a PGM.
- learn(List<? extends Node>, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
- learn(List<? extends Node>, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
- learn(List<? extends Node>, Dataset) - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.ParameterLearningAlgorithm
-
Learns the parameters of a certain PGM.
- LearningStreamExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments
-
This class implements a experiment on streaming data.
- LearningStreamExperiment(String...) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.LearningStreamExperiment
-
Constructs a LearningStreamExperiment with the given configuration parameters.
- learnInitialStructure(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC.CTPCHybridAlgorithm
-
Learns the initial structure of a given PGM.
- learnParameters() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- learnParameters() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Learns the parameters of the PGM.
- learnParameters(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- learnParameters(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.CTBN
- learnParameters(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
- learnParameters(Dataset) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Learns the parameters of the PGM using the provided dataset.
- learnParameters(Dataset, int) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- learnParameters(Dataset, int) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
- learnParameters(Dataset, int) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Learns the parameters of a certain node of the PGM using the provided dataset.
- learnParameters(Integer) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- learnParameters(Integer) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Learns the parameters of the node whose index is specified.
- learnParameters(List<Integer>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- learnParameters(List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Learns the parameters of the nodes whose indexes are specified.
- learnParameters(List<Integer>, ParameterLearningAlgorithm) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- learnParameters(List<Integer>, ParameterLearningAlgorithm) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Learns the parameters of the nodes whose indexes are specified using a provider parameter learning algorithm.
- learnParentSetNode(PGM<? extends Node>, int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
-
Learns the parent set of a node.
- learnParentSetNode(PGM<? extends Node>, int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC.CTPCHybridAlgorithm
- learnSkeleton(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC.PCHybridAlgorithm
-
Learns the skeleton of a given PGM.
- learnSkeleton(PGM<? extends Node>, boolean[][], List<List<Integer>>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
-
Finds the skeleton and separation sets of the given PGM.
- listsOfNodeContainSameElements(List<typeNode>, List<typeNode>) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Checks if two given lists of
Node
contain the same elements independently of their orders. - listToArray(List<?>) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Transforms a list into an
String
array. - logLikelihoodSequence(Sequence, List<NodeTypeCTBN>, State) - Static method in class es.upm.fi.cig.multictbnc.util.ProbabilityUtil
-
Computes the log-likelihood of a sequence, also known as temporal likelihood (Stella and Amer 2012), given the state of the class variables.
- logPriorProbabilityClassVariables(List<NodeTypeBN>, State) - Static method in class es.upm.fi.cig.multictbnc.util.ProbabilityUtil
-
Computes the logarithm of the prior probability of the class variables taking certain values.
M
- macroAveraging(Prediction[], Dataset, Metric) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
-
Computes the value of a given evaluation metric for a multi-dimensional classification problem using macro-averaging (Gil-Begue et al., 2021).
- main(String[]) - Static method in class es.upm.fi.cig.multictbnc.experiments.MainExperiment
-
Entry point of the application.
- main(String[]) - Static method in class es.upm.fi.cig.multictbnc.Main
-
Application entry point.
- main(String[]) - Static method in class es.upm.fi.cig.multictbnc.sampling.MainDataStreamSampling
-
Entry point of the application.
- main(String[]) - Static method in class es.upm.fi.cig.multictbnc.sampling.MainFeatureStreamSampling
-
Entry point of the application.
- main(String[]) - Static method in class es.upm.fi.cig.multictbnc.sampling.MainFeatureStreamSampling.MainFeatureStreamSamplingFX
-
Entry point for the JavaFX application responsible for the generation of feature streams.
- main(String[]) - Static method in class es.upm.fi.cig.multictbnc.sampling.MainSampling
-
Application entry point.
- main(Queue<String>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
-
The main method to execute the data stream experiments.
- main(Queue<String>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.FeatureStreamExperiment
-
The main method to execute the feature stream experiments.
- Main - Class in es.upm.fi.cig.multictbnc
-
JavaFX application to interact with the CTBNLab software.
- Main() - Constructor for class es.upm.fi.cig.multictbnc.Main
- MainDataStreamSampling - Class in es.upm.fi.cig.multictbnc.sampling
-
This class serves as the entry point for the data stream sampling application.
- MainDataStreamSampling() - Constructor for class es.upm.fi.cig.multictbnc.sampling.MainDataStreamSampling
- MainDataStreamSampling.MainDataStreamSamplingFX - Class in es.upm.fi.cig.multictbnc.sampling
-
This class represents the JavaFX application for data stream sampling.
- MainDataStreamSamplingFX() - Constructor for class es.upm.fi.cig.multictbnc.sampling.MainDataStreamSampling.MainDataStreamSamplingFX
- MainExperiment - Class in es.upm.fi.cig.multictbnc.experiments
-
Main class for running experiments.
- MainExperiment() - Constructor for class es.upm.fi.cig.multictbnc.experiments.MainExperiment
- MainFeatureStreamSampling - Class in es.upm.fi.cig.multictbnc.sampling
-
This class serves as the entry point for the feature stream sampling application.
- MainFeatureStreamSampling() - Constructor for class es.upm.fi.cig.multictbnc.sampling.MainFeatureStreamSampling
- MainFeatureStreamSampling.MainFeatureStreamSamplingFX - Class in es.upm.fi.cig.multictbnc.sampling
-
This class represents the JavaFX application for feature stream sampling.
- MainFeatureStreamSamplingFX() - Constructor for class es.upm.fi.cig.multictbnc.sampling.MainFeatureStreamSampling.MainFeatureStreamSamplingFX
- MainSampling - Class in es.upm.fi.cig.multictbnc.sampling
-
Class to sample datasets from Multi-CTBNCs with provided or randomly generated structures.
- MainSampling() - Constructor for class es.upm.fi.cig.multictbnc.sampling.MainSampling
- marginalLogLikelihoodSequence(double[]) - Static method in class es.upm.fi.cig.multictbnc.util.ProbabilityUtil
-
Computes the marginal log-likelihood of a sequence given the unnormalised log-a-posteriori probability for each class configuration.
- MarkovBlanketCTPC - Class in es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC
-
Implementation of the MB-CTPC algorithm.
- MarkovBlanketCTPC(double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.MarkovBlanketCTPC
-
Initialises the MB-CTPC algorithm by providing the significances to be used.
- MaxKCTBNC - Class in es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC
-
Implements the structure constraints of a Max-k continuous-time Bayesian network classifier, i.e., a CTBNC where the number of parents of the feature nodes is bounded by a positive number (Codecasa and Stella, 2014).
- MaxKCTBNC(int) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.MaxKCTBNC
-
Receives the maximum number of parents the nodes can have.
- meanAccuracy(Prediction[], Dataset) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
-
Computes the mean of the accuracies for each class variable (Bielza et al., 2011).
- meanAccuracy(Prediction[], Dataset, Map<String, Double>) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
-
Computes the mean of the accuracies for each class variable (Bielza et al., 2011).
- Metric - Interface in es.upm.fi.cig.multictbnc.performance
-
Interface used to be able to pass evaluation metrics as parameters of other methods.
- Metrics - Class in es.upm.fi.cig.multictbnc.performance
-
Computes different metrics for the evaluation of multi-dimensional classifications.
- Metrics() - Constructor for class es.upm.fi.cig.multictbnc.performance.Metrics
- MetricsWriter - Class in es.upm.fi.cig.multictbnc.writers.performance
-
Defines classes that write the results of evaluation metrics on different outputs.
- MetricsWriter() - Constructor for class es.upm.fi.cig.multictbnc.writers.performance.MetricsWriter
- microAveraging(Prediction[], Dataset, Metric) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
-
Computes the value of a given evaluation metric for a multi-dimensional classification problem using a micro-averaging (Gil-Begue et al., 2021).
- ModelComparisonExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments
-
Represents an experiment for comparing different models' performance on datasets with different settings.
- ModelComparisonExperiment(String...) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.ModelComparisonExperiment
-
Constructor for the ModelComparisonExperiment class.
- modifyEventValue(String, String) - Method in class es.upm.fi.cig.multictbnc.data.representation.State
-
Modifies the value of a given variable.
- MultiCTBNC<NodeTypeBN extends Node,
NodeTypeCTBN extends Node> - Class in es.upm.fi.cig.multictbnc.models -
Implements the multi-dimensional continuous-time Bayesian network classifier (Multi-CTBNC).
- MultiCTBNC(BNLearningAlgorithms, CTBNLearningAlgorithms, Class<NodeTypeBN>, Class<NodeTypeCTBN>) - Constructor for class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Receives learning algorithms for Bayesian networks and continuous-time Bayesian networks to generate a Multi-CTBNC.
- MultiCTBNC(BN<NodeTypeBN>, CTBN<NodeTypeCTBN>) - Constructor for class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Receives a Bayesian network and a continuous-time Bayesian network that represent the class subgraph and feature/bridge subgraph of a Multi-CTBNC, respectively.
- MultiCTNBC<NodeTypeBN extends Node,
NodeTypeCTBN extends Node> - Class in es.upm.fi.cig.multictbnc.models.submodels -
Specifies the structure constraints of a multidimensional continuous-time naive Bayes classifier (Multi-CTBNC) where any subgraph has arcs except the bridge subgraph (fully naive multi-dimensional classifier).
- MultiCTNBC(BNLearningAlgorithms, CTBNLearningAlgorithms, Class<NodeTypeBN>, Class<NodeTypeCTBN>) - Constructor for class es.upm.fi.cig.multictbnc.models.submodels.MultiCTNBC
-
Constructs a multidimensional continuous-time naive Bayes classifier given the learning algorithms for BNs and CTBNs.
- MultipleCSVReader - Class in es.upm.fi.cig.multictbnc.data.reader
-
Provides the logic to read separate CSV files.
- MultipleCSVReader(String) - Constructor for class es.upm.fi.cig.multictbnc.data.reader.MultipleCSVReader
-
Constructs a
MultipleCSVReader
that extracts all the CSV files from the specified folder. - MultipleCSVWriter - Class in es.upm.fi.cig.multictbnc.data.writer
-
Manages the writing of datasets into CSV files
- MultipleCSVWriter() - Constructor for class es.upm.fi.cig.multictbnc.data.writer.MultipleCSVWriter
N
- NaiveBayes - Class in es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC
-
Defines the structure of a continuous-time Naive Bayes classifier.
- NaiveBayes() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.NaiveBayes
- NeverSeenStateException - Exception in es.upm.fi.cig.multictbnc.exceptions
-
Thrown when a state was never seen before by the classifier.
- NeverSeenStateException(String) - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.NeverSeenStateException
-
Constructs a
NeverSeenStateException
with the specified detail message. - Node - Interface in es.upm.fi.cig.multictbnc.nodes
-
Interface for a generic node of a PGM.
- NodeFactory<NodeType extends Node> - Class in es.upm.fi.cig.multictbnc.nodes
-
Provides static methods for the creation of nodes.
- NodeIndexer<NodeType extends Node> - Class in es.upm.fi.cig.multictbnc.nodes
-
Links nodes with a unique index.
- NodeIndexer(List<NodeType>) - Constructor for class es.upm.fi.cig.multictbnc.nodes.NodeIndexer
-
Constructs a
NodeIndexer
. - NotImplementedException - Exception in es.upm.fi.cig.multictbnc.exceptions
-
Thrown when a requested task is not implemented.
- NotImplementedException(String) - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.NotImplementedException
-
Constructs a
NotImplementedException
with the specified detail message.
O
- OnlineFeatureSubsetSelection - Interface in es.upm.fi.cig.multictbnc.fss
-
This interface defines the structure for classes that implement online feature subset selection algorithms.
- OnlineMarkovBlanketCTPC - Class in es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC
-
This class extends the MB-CTPC algorithm to an online learning context, allowing for dynamic updates to the learned model based on new data.
- OnlineMarkovBlanketCTPC(double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.OnlineMarkovBlanketCTPC
-
Initialises the Online-MB-CTPC algorithm by providing the significances to be used.
- onlyPositiveDouble(TextField) - Static method in class es.upm.fi.cig.multictbnc.util.ControllerUtil
-
Checks that the text field only contains positive decimals.
- onlyPositiveInteger(TextField) - Static method in class es.upm.fi.cig.multictbnc.util.ControllerUtil
-
Checks that the text field only contains positive integers.
- onlyZeroOrGreaterInteger(TextField) - Static method in class es.upm.fi.cig.multictbnc.util.ControllerUtil
-
Checks that the text field only contains integers greater than zero.
- orientRemainingUndirectedEdges(boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
-
Orient the remaining undirected edges of the Bayesian network.
P
- PageHinkleyTest - Class in es.upm.fi.cig.multictbnc.conceptdriftdetection
-
Implements the Page Hinkley Test for concept drift detection.
- PageHinkleyTest(double, double, boolean, Integer) - Constructor for class es.upm.fi.cig.multictbnc.conceptdriftdetection.PageHinkleyTest
-
Initializes the Page Hinkley Test with the specified parameters.
- ParameterLearningAlgorithm - Interface in es.upm.fi.cig.multictbnc.learning.parameters
-
Interface for parameter learning algorithms.
- PC - Class in es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC
-
Implementation of the PC algorithm discrete-state Bayesian networks.
- PC(double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
-
Constructor that initialises the PC algorithm by proving the significance level used.
- PCHybridAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC
-
Implements the restriction phase (PC algorithm) of the hybrid structure learning algorithm.
- PCHybridAlgorithm(double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC.PCHybridAlgorithm
-
Initialises the algorithm by proving a significance level.
- penalisationFunctionMap - Variable in class es.upm.fi.cig.multictbnc.conceptdriftdetection.AverageLocalLogLikelihood
-
A map that associates penalisation function names with their corresponding mathematical functions.
- PGM<NodeType extends Node> - Interface in es.upm.fi.cig.multictbnc.models
-
Defines the methods of a probabilistic graphical model (PGM)
- precision(Map<String, Double>) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
-
Computes the precision evaluation metric from a
Map
containing a confusion matrix. - predict(Dataset, boolean) - Method in interface es.upm.fi.cig.multictbnc.classification.Classifier
-
Predicts the values of the class variables for each instance of a dataset.
- predict(Dataset, boolean) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Performs classification over the sequences of a dataset according to the maximum a posteriori probability, i.e., the classes that obtain the highest posterior probability given each sequence are predicted.
- Prediction - Class in es.upm.fi.cig.multictbnc.classification
-
Contains a multidimensional prediction and its probability.
- Prediction() - Constructor for class es.upm.fi.cig.multictbnc.classification.Prediction
- ProbabilityUtil - Class in es.upm.fi.cig.multictbnc.util
-
Utility class with methods related to the estimation of probabilities.
R
- RandomRestartHillClimbing - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing
-
Implements random-restart hill climbing.
- RandomRestartHillClimbing(HillClimbingImplementation, int) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.RandomRestartHillClimbing
-
Constructs a
RandomRestartHillClimbing
by receiving the implementation of the hill climbing algorithm (for a Bayesian network, continuous-time Bayesian network...) and the number of restarts. - readCompleteDataset() - Method in class es.upm.fi.cig.multictbnc.data.reader.FeatureStreamMultipleCSVReader
-
Reads the complete feature stream to generate a static dataset.
- readCSV(String, List<String>) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
-
Reads a CSV file.
- readDataset() - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Returns a dataset.
- readDataset() - Method in class es.upm.fi.cig.multictbnc.data.reader.FeatureStreamMultipleCSVReader
-
Reads a new feature variable from the feature stream and adds it to the current dataset.
- readDataset() - Method in class es.upm.fi.cig.multictbnc.data.reader.MultipleCSVReader
- readDataset() - Method in class es.upm.fi.cig.multictbnc.data.reader.SingleCSVReader
- readDataset(int) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
- readDataset(int) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Creates a dataset using only the specified number of files.
- readDataset(int) - Method in class es.upm.fi.cig.multictbnc.data.reader.DataStreamMultipleCSVReader
-
Reads a specified number of CSV files from the dataset folder and processes them into a dataset.
- readDataset(int) - Method in class es.upm.fi.cig.multictbnc.data.reader.MultipleCSVReader
- recall(Map<String, Double>) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
-
Computes the recall evaluation metric from a
Map
containing a confusion matrix. - redundancyAnalysis(CIMNode, CPTNode, CIMNode) - Method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
-
Determines if a feature node is redundant with respect to the class node, given another feature node.
- redundancyAnalysis(CIMNode, CPTNode, List<CIMNode>) - Method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
-
Determines if a feature node is redundant with respect to a class node, given a set of other feature nodes.
- redundancyAnalysis(CIMNode, CPTNode, List<CIMNode>, int) - Method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
-
Determines if a feature node is redundant with respect to a class node, given sets of features nodes with a determine maximum size.
- redundancyAnalysis(List<CIMNode>, CPTNode) - Method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
-
Returns a subset of feature nodes that are non-redundant given the class node.
- redundancyAnalysis(List<CIMNode>, CPTNode, CIMNode) - Method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
-
Returns a subset of feature nodes that are non-redundant given a conditioned feature node.
- removeAllEdges() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- removeAllEdges() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Remove all edges between the nodes of the PGM.
- removeAllEdges() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- removeAllEdges() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Removes the parents and children of the node.
- removeAllNodes() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- removeAllNodes() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Removes all the nodes from the PGM.
- removeChild(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- removeChild(Node) - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Removes a certain child of the node.
- removeChildren() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- removeChildren() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Removes the children of the node.
- removeColumnArray(String[][], int) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Remove a column from an array.
- removeFeatureVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Remove the specified feature variable from the dataset.
- removeFeatureVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Removes a feature from the sequence.
- removeFeatureVariables(List<String>) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Remove the specified feature variables from the dataset.
- removeParent(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- removeParent(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
- removeParent(Node) - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Removes a certain parent of the node.
- removeParents() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- removeParents() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Removes the parents of the node.
- removeZeroVarianceVariables(boolean) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
- removeZeroVarianceVariables(boolean) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Defines if the feature variables with no variance should be removed.
- resetNumEdgesTested() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
-
Sets to zero the number of evaluated edges.
- retrieveParametersAndSuffStatistics(PGM<? extends Node>, int, Map<String, List<Object>>, List<Integer>, Integer...) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
-
Retrieves the parameter and sufficient statistics of a node.
- retrieveSubfolders(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Returns the names of the subfolders in a certain folder.
S
- sample(double) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Samples a sequence given its duration.
- sample(double, double, double) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Samples a sequence given its duration with added noise.
- sampleNextState(double) - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
-
Samples the next state of the node given the current one and that of its parents.
- sampleState(double) - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
-
Samples the state of the node given evidence using forward sampling.
- sampleTimeState(double) - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
-
Samples the time that the node stays in its current state given the state of its parents.
- saveGraph(String, String, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- saveGraph(String, String, List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Saves the PGM graph to a file.
- selectCrossValidation() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
Cross-validation method was selected.
- selectHoldOutValidation() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
Hold-out-validation method was selected.
- selectTestDataset() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
Test dataset method was selected.
- Sequence - Class in es.upm.fi.cig.multictbnc.data.representation
-
Represents a sequence of multivariate data, i.e., a set of data points with multiple variables where the order is relevant.
- Sequence(State, List<State>, String, List<Double>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Constructs a
Sequence
. - Sequence(String, List<String>, List<String>, double[], String[][], String[], Map<String, Integer>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Constructs a
Sequence
. - Sequence(List<String>, String, List<String>, List<String[]>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Constructs a
Sequence
. - Sequence(List<String>, String, List<String>, List<String>, List<String[]>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Constructs a
Sequence
. - setAdjacencyMatrix(boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
-
Sets the adjacency matrix of the structure.
- setArcModified(int, int, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
-
Define the last arc that was modified.
- setAreResultsSaved(boolean) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
-
Sets the flag indicating whether the results of the experiment should be saved.
- setBnLearningAlgs(BNLearningAlgorithms) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Sets the learning algorithms used to define the class subgraph (BN).
- setChild(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- setChild(Node) - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Defines a provided node as a child of this one.
- setCPT(double[][]) - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
-
Establishes the CPT of the node.
- setCtbnLearningAlgs(CTBNLearningAlgorithms) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Sets the learning algorithms used to define the bridge and feature subgraphs (CTBN).
- setCurrentFeatureVariables(List<String>) - Method in class es.upm.fi.cig.multictbnc.fss.ConInd
-
Sets the current feature variables for the algorithm.
- setCurrentFeatureVariables(List<String>) - Method in interface es.upm.fi.cig.multictbnc.fss.OnlineFeatureSubsetSelection
-
Sets the current set of feature variables.
- setDataset(Dataset) - Method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
-
Sets the dataset to be used in the feature subset selection.
- setDataset(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Set the dataset used to learn the PGM.
- setDatasetAsOutdated(boolean) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
- setDatasetAsOutdated(boolean) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Defines a previously read dataset as out-of-date, so it should be reloaded.
- setFilePath(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
-
Sets the path of the file from which the sequence was extracted.
- setFolderDataset() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
Opens a dialog to select the folder where the dataset for training and evaluation is located.
- setFolderDatasetClassification() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
Opens a dialog to select the folder where the dataset on which classification is performed is located.
- setFolderTestDataset() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
Opens a dialog to select the folder where the dataset for testing is located.
- setIgnoredClassVariables(List<String>) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Sets the class variables to ignored.
- setInitialStructure(String) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Establishes the approach that will be used to define the initial structure of the Multi-CTBNC.
- setNameVariables(List<String>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Set the name of the variables in the PGM.
- setParameterLearningAlgorithm(ParameterLearningAlgorithm) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Establishes the algorithm that will be used to learn the parameters of the PGM.
- setParameters(double[][], double[][][]) - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
-
Sets the parameters of a node.
- setParametersExperiment(Queue<String>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
-
Sets up the parameters for a data stream experiment using a queue of arguments.
- setParametersExperiment(Queue<String>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.FeatureStreamExperiment
-
Sets up the parameters for a feature stream experiment using a queue of arguments.
- setParametersModel(MultiCTBNC<CPTNode, CIMNode>) - Static method in class es.upm.fi.cig.multictbnc.sampling.MainFeatureStreamSampling.MainFeatureStreamSamplingFX
-
Sets the parameters of the given Multi-CTBNC.
- setParent(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- setParent(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
- setParent(Node) - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Defines a provided node as a parent of this one.
- setPredictedClasses(State) - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
-
Sets the predicted classes.
- setPredictionTime(double) - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
-
Sets the prediction time.
- setProbabilities(Map<State, Double>) - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
-
Sets the probabilities of every possible class configuration.
- setProbability(State, double) - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
-
Sets the probability of a class configuration.
- setProbabilityPrediction(double) - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
-
Sets the probability of the prediction.
- setScore(double) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
-
Sets the score of the structure found.
- setStage(Stage) - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
Establishes the stage used by the application to show dialogs.
- setState(int) - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
-
Sets the state index of the node.
- setState(String) - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
-
Sets the state of the node and returns its id.
- setStateNodeAndParents(DiscreteStateNode, State) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Sets the state of a given node and its parents from a
State
object. - setStateParents(int) - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
-
Sets the states of the parents of the node given the index related to their state.
- setStatesVariables(Map<String, List<String>>) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
-
Sets states of all variables.
- setStructure(boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- setStructure(boolean[][]) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Modifies the structure of the PGM by changing the parents of the nodes.
- setStructure(int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- setStructure(int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.CTBN
-
Modifies the structure of the continuous-time Bayesian network by changing the parent set of a specified node and updates its parameters.
- setStructure(int, boolean[][]) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Updates the structure of the model only for the specified node.
- setStructure(List<Integer>, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- setStructure(List<Integer>, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.CTBN
-
Modifies the structure of the continuous-time Bayesian network by changing the parent set of some specified nodes and updates their parameters.
- setStructure(List<Integer>, boolean[][]) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Updates the structure of the model only for the specified node.
- setStructureConstraints(StructureConstraints) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Establishes the constraints that the PGM needs to meet.
- setStructureLearningAlgorithm(StructureLearningAlgorithm) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
-
Establishes the algorithm that will be used to learn the structure of the PGM.
- setStructureModifiedNodes(boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
- setStructureModifiedNodes(boolean[][]) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
-
Modifies the structure of the PGM by changing the parents and CPDs of those nodes which have different parents between the current adjacency matrix and the new one.
- setSufficientStatistics(SufficientStatistics) - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
- setSufficientStatistics(SufficientStatistics) - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
-
Establishes the sufficient statistics of a CPT node.
- setSufficientStatistics(SufficientStatistics) - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
-
Establishes the sufficient statistics of the node.
- setSufficientStatistics(Node, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
- setSufficientStatistics(Node, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
- setSufficientStatistics(Node, Dataset) - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.ParameterLearningAlgorithm
-
Obtains the sufficient statistics of a BN node.
- setSufficientStatistics(List<? extends Node>, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
-
Obtains for each node the number of times it takes a certain state while its parents take a certain instantiation.
- setSufficientStatistics(List<? extends Node>, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
-
Obtains the sufficient statistics of each node of a CTBN.
- setTimeAndClassVariables(String, List<String>) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
- setTimeAndClassVariables(String, List<String>) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Receives the names of the time and class variables of a dataset.
- setTimeAndFeatureVariables(String, List<String>) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
- setTimeAndFeatureVariables(String, List<String>) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Receives the names of the time and feature variables of a dataset.
- setTimeVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
- setTimeVariable(String) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Receives the name of the time variable of a dataset.
- setUpLineChart(String, double) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftAdaptiveMethod
-
Sets up line charts for visualizing concept drift detection results if the charts are enabled.
- setUpLineChart(String, double) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftGloballyAdaptiveMethod
-
Sets up line charts for visualizing concept drift detection results if the charts are enabled.
- setUpLineChart(String, double) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftLocallyAdaptiveMethod
-
Sets up line charts for visualizing the evolution of the average local log-likelihood and Page Hinkley values if the charts are enabled.
- setVariables(String, List<String>, List<String>) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
- setVariables(String, List<String>, List<String>) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
-
Receives the names of the time variable, feature variables and class variables of a dataset.
- setWriter(MetricsWriter) - Method in class es.upm.fi.cig.multictbnc.performance.ValidationMethod
-
Defines the metrics writer used to save the results of the evaluation.
- showNode(Node, boolean) - Static method in class es.upm.fi.cig.multictbnc.util.ControllerUtil
-
Changes the visibility of a node.
- showPredictions(Prediction[], Dataset) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
-
Displays the predictions along with the actual values.
- shuffle(List<T>, Long) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Shuffles the elements of a list.
- SingleCSVReader - Class in es.upm.fi.cig.multictbnc.data.reader
-
Reads time series data contained in a single CSV.
- SingleCSVReader(String, int) - Constructor for class es.upm.fi.cig.multictbnc.data.reader.SingleCSVReader
-
Constructs a
SingleCSVReader
that extracts a CSV file from the specified folder. - SlidingWindow<T> - Class in es.upm.fi.cig.multictbnc.data.representation
-
Represents a sliding window data structure.
- SlidingWindow(int) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.SlidingWindow
-
Constructs a sliding window with the specified size.
- start(Stage) - Method in class es.upm.fi.cig.multictbnc.Main
- start(Stage) - Method in class es.upm.fi.cig.multictbnc.sampling.MainDataStreamSampling.MainDataStreamSamplingFX
- start(Stage) - Method in class es.upm.fi.cig.multictbnc.sampling.MainFeatureStreamSampling.MainFeatureStreamSamplingFX
- State - Class in es.upm.fi.cig.multictbnc.data.representation
-
Represents the state of certain nodes/variables (events) by keeping their names and values.
- State() - Constructor for class es.upm.fi.cig.multictbnc.data.representation.State
-
Default constructor.
- State(State) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.State
-
Constructor to clone states;
- State(String, String) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.State
-
Creates a State instance with one event.
- State(Map<String, String>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.State
-
Creates a State instance with some events.
- StatisticalBasedFeatureSelection - Class in es.upm.fi.cig.multictbnc.fss
-
Provides the basis for statistical-based feature subset selection algorithms.
- StatisticalBasedFeatureSelection(List<String>, ParameterLearningAlgorithm, int, double, double) - Constructor for class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
-
Initializes the necessary structures for feature subset selection including parameter learning algorithms, significance levels, and a cache for redundancy checks.
- stop() - Method in class es.upm.fi.cig.multictbnc.Main
- stringToList(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Extract a list of Strings from a String representation of a list with the format "element1,element2,element3" (commas are the delimiters).
- stringToMap(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Extract a map from a String with the format "String:Double,String:Double", where the Strings are the keys and the doubles the values.
- StructureConstraints - Interface in es.upm.fi.cig.multictbnc.learning.structure.constraints
-
Interface used to define classes that specify structure constraints for PGMs.
- StructureLearningAlgorithm - Interface in es.upm.fi.cig.multictbnc.learning.structure
-
Interface used to define algorithms for learning the structure of PGMs.
- StructureLearningAlgorithmFactory - Class in es.upm.fi.cig.multictbnc.learning.structure
-
Builds the specified structure learning algorithms for Bayesian networks and continuous-time Bayesian networks.
- StructureLearningAlgorithmFactory() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithmFactory
- StructureLearningAlgorithmsComparisonExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments
-
Class designed to perform a comparative experiment of structure learning algorithms for Multi-CTBNCs.
- StructureLearningAlgorithmsComparisonExperiment(String[]) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.StructureLearningAlgorithmsComparisonExperiment
-
Constructor that initializes the experiment with the provided configuration.
- SubsetSelectedFeatures - Class in es.upm.fi.cig.multictbnc.fss
-
Class that encapsulates the names of the feature variables selected by a FSS algorithm and the execution time of this algorithm to provide that solution.
- SubsetSelectedFeatures(List<String>, double) - Constructor for class es.upm.fi.cig.multictbnc.fss.SubsetSelectedFeatures
-
Constructs an instance of SubsetSelectedFeatureVariables.
- succeeded() - Method in class es.upm.fi.cig.multictbnc.tasks.ClassificationTask
- succeeded() - Method in class es.upm.fi.cig.multictbnc.tasks.EvaluationTask
- succeeded() - Method in class es.upm.fi.cig.multictbnc.tasks.TrainingTask
- SufficientStatistics - Interface in es.upm.fi.cig.multictbnc.learning.parameters
-
Interface for sufficient statistics of discrete nodes.
- szudzikFunction(int, int) - Static method in class es.upm.fi.cig.multictbnc.util.Util
-
Given two non-negative numbers, this method returns a non-negative integer that is uniquely associated with that pair.
T
- TestDatasetBinaryRelevanceMethod - Class in es.upm.fi.cig.multictbnc.performance
-
Implements a validation method for evaluating CTBNCs using a test.
- TestDatasetBinaryRelevanceMethod(DatasetReader, DatasetReader, boolean) - Constructor for class es.upm.fi.cig.multictbnc.performance.TestDatasetBinaryRelevanceMethod
-
Constructor that receives the dataset readers and configuration.
- TestDatasetMethod - Class in es.upm.fi.cig.multictbnc.performance
-
This class allows specifying different training and test datasets.
- TestDatasetMethod(DatasetReader, boolean) - Constructor for class es.upm.fi.cig.multictbnc.performance.TestDatasetMethod
-
Constructor that receives a
DatasetReader
for the test dataset, whether the dataset should be shuffled, a seed for shuffling and whether the probabilities of each class configuration should be estimated during the testing. - TestDatasetMethod(DatasetReader, DatasetReader, boolean) - Constructor for class es.upm.fi.cig.multictbnc.performance.TestDatasetMethod
-
Constructor that receives two
DatasetReader
for the training and test datasets, whether the test dataset should be shuffled, a seed for shuffling and whether the probabilities of each class configuration should be estimated during the testing. - testNullStateToStateTransitionHypForGivenSepSet(CIMNode, CIMNode, List<String>, CTBNSufficientStatistics, CTBNSufficientStatistics) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
-
Evaluates null state-to-state transition hypothesis for a given node and parent node given a certain separating set.
- testNullStateToStateTransitionHypothesis(CIMNode, List<String>, CTBNSufficientStatistics, CTBNSufficientStatistics) - Static method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
-
Evaluates the null state-to-state transition hypothesis between a feature node and the class node, given a separating set.
- testNullTimeToTransitionHypForGivenSepSet(CIMNode, CIMNode, List<String>, double[][], CTBNSufficientStatistics, double[][], CTBNSufficientStatistics) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
-
Evaluate null time to transition hypothesis for a given node and parent given a certain separating set.
- testNullTimeToTransitionHypothesis(CIMNode, List<String>, CTBNSufficientStatistics, double[][], CTBNSufficientStatistics, double[][]) - Static method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
-
Evaluates the null time to transition hypothesis between a feature node and the class node, given a separating set.
- TimeSeriesChart - Class in es.upm.fi.cig.multictbnc.gui
-
A class for creating and managing a time series chart using the JFreeChart library.
- TimeSeriesChart(String, String, String, int[], String...) - Constructor for class es.upm.fi.cig.multictbnc.gui.TimeSeriesChart
-
Constructs a TimeSeriesChart instance.
- toString() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
- toString() - Method in class es.upm.fi.cig.multictbnc.data.representation.State
- toString() - Method in class es.upm.fi.cig.multictbnc.fss.SubsetSelectedFeatures
- toString() - Method in class es.upm.fi.cig.multictbnc.models.BN
- toString() - Method in class es.upm.fi.cig.multictbnc.models.CTBN
- toString() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
- toString() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
- toString() - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
- toString() - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
- toString() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
- TrainingService - Class in es.upm.fi.cig.multictbnc.services
-
Service that creates and manages a
TrainingTask
. - TrainingService() - Constructor for class es.upm.fi.cig.multictbnc.services.TrainingService
- TrainingTask - Class in es.upm.fi.cig.multictbnc.tasks
-
Task that allows executing the training of a model in a background thread.
- TrainingTask(MultiCTBNC<?, ?>, DatasetReader) - Constructor for class es.upm.fi.cig.multictbnc.tasks.TrainingTask
-
Constructs a
TrainingTask
that receives anMultiCTBNC
model and adatasetReader
. - trainModel() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
-
Trains the selected model.
- TxtClassificationWriter - Class in es.upm.fi.cig.multictbnc.writers.classification
-
Class to write the predictions made on a dataset in a TXT file.
- TxtClassificationWriter() - Constructor for class es.upm.fi.cig.multictbnc.writers.classification.TxtClassificationWriter
U
- uniqueStructure() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.AbstractStructureConstraints
- uniqueStructure() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.BN.EmptyBN
- uniqueStructure() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.NaiveBayes
- uniqueStructure() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.constraints.StructureConstraints
-
Determines if there is only one possible structure.
- UnreadDatasetException - Exception in es.upm.fi.cig.multictbnc.exceptions
-
Thrown when the provided dataset could not be read.
- UnreadDatasetException(String) - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.UnreadDatasetException
-
Constructs a
UnreadDatasetException
with the specified detail message. - update(double) - Method in class es.upm.fi.cig.multictbnc.gui.TimeSeriesChart
-
Updates the chart with a new value for the Y axis.
- update(double[]) - Method in class es.upm.fi.cig.multictbnc.gui.TimeSeriesChart
-
Updates the chart providing the Y axis value of several time series.
- update(double, double) - Method in class es.upm.fi.cig.multictbnc.gui.XYLineChart
-
Updates the chart with a new value for the X and Y axis.
- update(double, double[]) - Method in class es.upm.fi.cig.multictbnc.gui.XYLineChart
-
Updates the chart providing the X and Y axis values of several series.
- update(List<Node>, Dataset) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Learns the sets of parents and children of some nodes from a provided dataset and update the model with them.
- updateBridgeAndFeatureSubgraph(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
-
Updates the bridge and feature subgraphs of the Multi-CTBNC model with new data from the provided dataset.
- updateMx(int, int, double) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
-
Updates the number of occurrences where the node transitions from a certain state to any other state given an instantiation of its parents.
- updateMxy(int, int, int, double) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
-
Updates the number of occurrences where the node transitions from a certain state to another given an instantiation of its parents.
- updateSufficientStatistics(Sequence, int, int, int, int) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
-
Update the values of the sufficient statistics.
- UserInterfaceUtil - Class in es.upm.fi.cig.multictbnc.util
-
Utility class with methods related to the user interface.
- Util - Class in es.upm.fi.cig.multictbnc.util
-
Utility class.
V
- ValidationMethod - Class in es.upm.fi.cig.multictbnc.performance
-
Abstract class defining common methods for validation algorithms.
- ValidationMethod() - Constructor for class es.upm.fi.cig.multictbnc.performance.ValidationMethod
- ValidationMethodFactory - Class in es.upm.fi.cig.multictbnc.performance
-
Builds validation methods.
- ValidationMethodFactory() - Constructor for class es.upm.fi.cig.multictbnc.performance.ValidationMethodFactory
- VariableNotFoundException - Exception in es.upm.fi.cig.multictbnc.exceptions
-
Thrown when an expected variable is not found in a provided dataset.
- VariableNotFoundException() - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.VariableNotFoundException
-
Constructs a
VariableNotFoundException
with no detail message. - VariableNotFoundException(String) - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.VariableNotFoundException
-
Constructs a
VariableNotFoundException
with the specified detail message.
W
- write(Dataset, String) - Static method in class es.upm.fi.cig.multictbnc.data.writer.MultipleCSVWriter
-
Writes the sequences of the provided dataset to multiple CSV files in the specified directory.
- write(Dataset, List<String>, String) - Static method in class es.upm.fi.cig.multictbnc.data.writer.MultipleCSVWriter
-
Writes the sequences of the provided dataset to multiple CSV files in the specified directory, including only the specified feature variables.
- write(Sequence, String, String) - Static method in class es.upm.fi.cig.multictbnc.data.writer.MultipleCSVWriter
-
Writes a sequence to a CSV file in the specified directory.
- write(Sequence, List<String>, String, String) - Static method in class es.upm.fi.cig.multictbnc.data.writer.MultipleCSVWriter
-
Writes a sequence to a CSV file in the specified directory and including only the specified feature variables.
- write(List<Map<String, Double>>) - Method in class es.upm.fi.cig.multictbnc.writers.performance.MetricsWriter
-
Writes the results to an output.
- write(Map<String, Double>) - Method in class es.upm.fi.cig.multictbnc.writers.performance.ConsoleExperimentsWriter
- write(Map<String, Double>) - Method in class es.upm.fi.cig.multictbnc.writers.performance.ExcelExperimentsWriter
- write(Map<String, Double>) - Method in class es.upm.fi.cig.multictbnc.writers.performance.MetricsWriter
-
Writes the given results.
- writePredictions(Prediction[], Dataset, String) - Static method in class es.upm.fi.cig.multictbnc.writers.classification.TxtClassificationWriter
-
Writes predictions of a dataset in the specified folder.
X
- XYLineChart - Class in es.upm.fi.cig.multictbnc.gui
-
A class for creating and managing an XY line chart using the JFreeChart library.
- XYLineChart(String, String, String, int[], String...) - Constructor for class es.upm.fi.cig.multictbnc.gui.XYLineChart
-
Constructs an XYLineChart instance.
All Classes and Interfaces|All Packages|Serialized Form