Index

A B C D E F G H I K L M N O P R S T U V W X 
All Classes and Interfaces|All Packages|Serialized Form

A

AbstractCSVReader - Class in es.upm.fi.cig.multictbnc.data.reader
Common attributes and methods for dataset readers.
AbstractCSVReader(String) - Constructor for class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
Receives the path to the dataset folder and initialises the reader as out-of-date.
AbstractExperiment - Class in es.upm.fi.cig.multictbnc.experiments
Abstract class for defining experiments.
AbstractExperiment(String[]) - Constructor for class es.upm.fi.cig.multictbnc.experiments.AbstractExperiment
This constructor initializes an experiment with the provided configuration parameters.
AbstractLikelihood - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores
Abstract class defining common variables and methods for likelihood-based scores.
AbstractLikelihood(String) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.AbstractLikelihood
Receives the name of the penalisation function for the structure complexity.
AbstractNode - Class in es.upm.fi.cig.multictbnc.nodes
Abstract class defining common variables and methods for any kind of node.
AbstractNode(String) - Constructor for class es.upm.fi.cig.multictbnc.nodes.AbstractNode
Common initialisation for nodes.
AbstractNode(String, boolean) - Constructor for class es.upm.fi.cig.multictbnc.nodes.AbstractNode
Common initialisation for nodes.
AbstractPGM<NodeType extends Node> - Class in es.upm.fi.cig.multictbnc.models
Contains common attributes and methods for PGM.
AbstractPGM() - Constructor for class es.upm.fi.cig.multictbnc.models.AbstractPGM
Default constructor.
AbstractPGM(List<NodeType>) - Constructor for class es.upm.fi.cig.multictbnc.models.AbstractPGM
Common initialisation for PGMs.
AbstractPGM(List<NodeType>, Dataset) - Constructor for class es.upm.fi.cig.multictbnc.models.AbstractPGM
Common initialisation for PGMs.
AbstractStructureConstraints - Class in es.upm.fi.cig.multictbnc.learning.structure.constraints
Contains common attributes and methods for classes that determine the structure constraints of PFG.
AbstractStructureConstraints() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraints.AbstractStructureConstraints
 
adaptModel(MultiCTBNC<CPTNode, CIMNode>, Dataset) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftAdaptiveMethod
Abstract method for adapting the model based on the provided data batch.
adaptModel(MultiCTBNC<CPTNode, CIMNode>, Dataset) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftGloballyAdaptiveMethod
Adapts the provided MultiCTBNC model based on the new data batch.
adaptModel(MultiCTBNC<CPTNode, CIMNode>, Dataset) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftLocallyAdaptiveMethod
Adapts the provided MultiCTBNC model based on the new data batch.
add(T) - Method in class es.upm.fi.cig.multictbnc.data.representation.SlidingWindow
Adds a new object to the sliding window.
addEvent(String, String) - Method in class es.upm.fi.cig.multictbnc.data.representation.State
Adds an event (a variable taking a certain value) to the state.
addEvents(Map<String, String>) - Method in class es.upm.fi.cig.multictbnc.data.representation.State
Adds events to the state.
addFeatureVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Registers the name of a feature in the dataset to allow the inclusion of sequences that contain it.
addFeatureVariable(String, Dataset) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Add a new feature variable to the dataset given the sequences containing the transitions of the variable.
addFeatureVariable(String, Sequence) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Adds a new feature variable to the sequence by copying the values from another sequence with the same number of observations.
addHorizontalValueMarker(double) - Method in class es.upm.fi.cig.multictbnc.gui.XYLineChart
Adds a horizontal value marker to the chart.
addNodes(List<NodeType>, boolean) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
addNodes(List<NodeType>, boolean) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Adds the provided nodes to the PGM.
addSepSetAndNodeAsParents(PGM<? extends Node>, CIMNode, List<Integer>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
Defines a node, which is being studied as a possible parent node, and a separating set as parents of an evaluated node.
addSepSetAsParents(PGM<? extends Node>, CIMNode, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
Defines a separating set as parents of an evaluated node.
addSequence(Sequence) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Receives a Sequence to add it to the dataset.
addSequence(List<String[]>) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Receives a list of Strings (a sequence) from which a Sequence is created and adds it to the dataset.
addSequence(List<String[]>, String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Receives a list of Strings (a sequence) and the path of the file from which it was extracted.
addSeries(String...) - Method in class es.upm.fi.cig.multictbnc.gui.XYLineChart
Adds new series to the chart.
addVerticalValueMarker(double) - Method in class es.upm.fi.cig.multictbnc.gui.XYLineChart
Adds a vertical value marker to the chart.
areParametersEstimated() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
areParametersEstimated() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
 
areParametersEstimated() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Returns true if all the parameters were estimated.
areParametersEstimated() - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
 
areParametersEstimated() - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
 
areParametersEstimated() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Returns true if the parameters of the node were estimated.
arrayToQueue(String[]) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Converts an array of strings into a queue of strings.
AverageLocalLogLikelihood - Class in es.upm.fi.cig.multictbnc.conceptdriftdetection
This class provides a method to compute the average local log-likelihood of each node of a Multi-CTBNC.
AverageLocalLogLikelihood(String) - Constructor for class es.upm.fi.cig.multictbnc.conceptdriftdetection.AverageLocalLogLikelihood
Constructs an instance of AverageLocalLogLikelihood with a specified penalisation function.

B

BN<NodeType extends Node> - Class in es.upm.fi.cig.multictbnc.models
Implements a Bayesian network (BN).
BN(Dataset, List<String>, BNLearningAlgorithms, StructureConstraints, Class<NodeType>) - Constructor for class es.upm.fi.cig.multictbnc.models.BN
Initialises a Bayesian network by receiving a dataset, a list of variables to use and the algorithms for parameter and structure learning.
BN(BN<NodeType>, boolean) - Constructor for class es.upm.fi.cig.multictbnc.models.BN
Constructor to clone a Bayesian network.
BN(List<NodeType>) - Constructor for class es.upm.fi.cig.multictbnc.models.BN
Initialises a Bayesian network by receiving a list of nodes.
BN(List<NodeType>, Dataset) - Constructor for class es.upm.fi.cig.multictbnc.models.BN
Initialises a Bayesian network by receiving a list of nodes and a dataset.
BNBayesianEstimation - Class in es.upm.fi.cig.multictbnc.learning.parameters.bn
Implements the Bayesian estimation to estimate the parameters of a BN.
BNBayesianEstimation(double) - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNBayesianEstimation
Receives the hyperparameter of the Dirichlet prior distribution over the parameters (i.e. imaginary counts).
BNBayesianScore - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn
Implements the Bayesian Dirichlet equivalence metric for Bayesian networks with nodes that have CPTs (Heckerman et al., 1995).
BNBayesianScore() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNBayesianScore
 
BNHillClimbing - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation
Implements hill climbing algorithm for BNs.
BNHillClimbing(BNScoreFunction) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
Constructor that receives the score function to optimise.
BNHillClimbingHybridAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing
Implements the maximisation phase (hill climbing algorithm) of the hybrid structure learning algorithm for Bayesian networks.
BNHillClimbingHybridAlgorithm(BNScoreFunction, boolean[][]) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing.BNHillClimbingHybridAlgorithm
Initialises the algorithm by proving a score function and a skeleton of the Bayesian network.
BNHybridStructureLearningAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.structure.hybrid
Implements the hybrid structure learning algorithm for Bayesian networks.
BNHybridStructureLearningAlgorithm(BNScoreFunction, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.hybrid.BNHybridStructureLearningAlgorithm
Initialises the hybrid structure learning algorithm receiving a significance value and a score function.
BNLearningAlgorithms - Class in es.upm.fi.cig.multictbnc.learning
Stores the parameter and structure learning algorithms for a Bayesian network.
BNLearningAlgorithms(BNParameterLearningAlgorithm, StructureLearningAlgorithm) - Constructor for class es.upm.fi.cig.multictbnc.learning.BNLearningAlgorithms
Receives the learning algorithms for the parameters and the structure.
BNLogLikelihood - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn
Implements the log-likelihood score for Bayesian networks with nodes that have CPTs.
BNLogLikelihood(String) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNLogLikelihood
Receives the name of the penalisation function for the structure complexity.
BNMaximumLikelihoodEstimation - Class in es.upm.fi.cig.multictbnc.learning.parameters.bn
Maximum likelihood estimation of BN parameters.
BNMaximumLikelihoodEstimation() - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNMaximumLikelihoodEstimation
 
BNParameterLearningAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.parameters.bn
Defines methods for parameter learning algorithms of discrete Bayesian networks.
BNParameterLearningAlgorithm() - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
 
BNParameterLearningAlgorithmFactory - Class in es.upm.fi.cig.multictbnc.learning.parameters.bn
Builds the specified parameter learning algorithm for a BN.
BNParameterLearningAlgorithmFactory() - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithmFactory
 
BNScoreFunction - Interface in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn
Interface used to define scores for Bayesian networks.
BNSufficientStatistics - Class in es.upm.fi.cig.multictbnc.learning.parameters.bn
Compute and store the sufficient statistics of a discrete BN node.
BNSufficientStatistics(double) - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNSufficientStatistics
Constructs a BNSufficientStatistics by receiving the hyperparameter of the Dirichlet prior distribution.
BNTabuSearch - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch
Implements the tabu search algorithm for Bayesian networks.
BNTabuSearch(BNScoreFunction, int, int) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.BNTabuSearch
Initialises the tabu search algorithm by proving a score function and a tabu list size.
buildCompleteStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
Returns the adjacency matrix of a PGM with a complete structure.
buildCompleteStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
Returns the adjacency matrix of a PGM with a complete structure.

C

call() - Method in class es.upm.fi.cig.multictbnc.tasks.ClassificationTask
 
call() - Method in class es.upm.fi.cig.multictbnc.tasks.EvaluationTask
 
call() - Method in class es.upm.fi.cig.multictbnc.tasks.TrainingTask
 
cartesianProduct(List<List<State>>) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Given a list of lists with the possible states of some variables, this method returns the Cartesian product between each of the possible states of each variable.
changeDatasetReader() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
A dataset reader was selected in the comboBox.
changeDatasetReaderClassification() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
A dataset reader for the classification dataset was selected in the comboBox.
changeDatasetReaderClassificationStrategy() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
An strategy for the extraction of sequences to classify was selected.
changeDatasetReaderStrategy() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
An strategy for the extraction of sequences was selected.
changeModel() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
A model was selected in the comboBox.
changeParameterLearningAlgBN() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
A parameter learning algorithm for BNs was selected in the comboBox.
changeParameterLearningAlgCTBN() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
A parameter learning algorithm for CTBNs was selected in the comboBox.
changeScoreFunction() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
A score function was selected in the comboBox.
changeStructureLearningAlg() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
A structure learning algorithm was selected in the comboBox.
checkVarianceFeatures(boolean) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Removes from the dataset those feature variables with zero variance.
CIMNode - Class in es.upm.fi.cig.multictbnc.nodes
Extends the DiscreteNode class to store a CIM and the sufficient statistics for a CTBN.
CIMNode(CIMNode) - Constructor for class es.upm.fi.cig.multictbnc.nodes.CIMNode
Constructor to clone a CIM node.
CIMNode(String, List<String>) - Constructor for class es.upm.fi.cig.multictbnc.nodes.CIMNode
Constructs a CIMNode given its name and possible states.
CIMNode(String, List<String>, boolean) - Constructor for class es.upm.fi.cig.multictbnc.nodes.CIMNode
Initialises a CIMNode given its name, possible states and if it is a class variable.
ClassificationService - Class in es.upm.fi.cig.multictbnc.services
Service that creates and manages a ClassificaionTask.
ClassificationService() - Constructor for class es.upm.fi.cig.multictbnc.services.ClassificationService
 
ClassificationTask - Class in es.upm.fi.cig.multictbnc.tasks
Task that allows executing the classification of sequences in a background thread.
ClassificationTask(MultiCTBNC<?, ?>, DatasetReader, boolean) - Constructor for class es.upm.fi.cig.multictbnc.tasks.ClassificationTask
Constructs a ClassificationTask that receives an MultiCTBNC model and a datasetReader.
Classifier - Interface in es.upm.fi.cig.multictbnc.classification
Interface representing classification models.
ClassifierFactory - Class in es.upm.fi.cig.multictbnc.classification
Provides static methods for the creation of classifiers.
ClassifierFactory() - Constructor for class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
 
classify() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
Performs classification over a provided dataset with a previously trained model.
clearParentAndChildrenSets() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
clearParentAndChildrenSets() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
 
clearParentAndChildrenSets() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Remove the set of parents and children of the node.
clone2DArray(double[][]) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Creates a deep copy of a two-dimensional double array.
clone3DArray(double[][][]) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Creates a deep copy of a three-dimensional double array.
close() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamImplementationExperiment
Closes the resources used for the experiment.
close() - Method in class es.upm.fi.cig.multictbnc.writers.performance.ExcelExperimentsWriter
 
close() - Method in class es.upm.fi.cig.multictbnc.writers.performance.MetricsWriter
Closes the writer.
combination(List<type>, int) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Returns all possible combinations of size 'k' of a given list of elements.
compute(BN<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNBayesianScore
 
compute(BN<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNLogLikelihood
Computes the (penalised) log-likelihood score for a discrete Bayesian network.
compute(BN<? extends Node>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNScoreFunction
Computes the score of a Bayesian network.
compute(CTBN<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNBayesianScore
 
compute(CTBN<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNConditionalLogLikelihood
Computes the (penalised) conditional log-likelihood score of a discrete continuous-time Bayesian network.
compute(CTBN<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNLogLikelihood
 
compute(CTBN<? extends Node>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNScoreFunction
Computes the score for a continuous-time Bayesian network.
compute(CTBN<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNBayesianScore
 
compute(CTBN<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNConditionalLogLikelihood
 
compute(CTBN<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNLogLikelihood
Computes the (penalised) log-likelihood score at a given node of a discrete continuous-time Bayesian network.
compute(CTBN<? extends Node>, int) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNScoreFunction
Computes the score of a continuous-time Bayesian network at a given node.
compute(MultiCTBNC<CPTNode, CIMNode>, Dataset, List<String>) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.AverageLocalLogLikelihood
 
compute(MultiCTBNC<CPTNode, CIMNode>, Dataset, List<String>) - Method in interface es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftScore
Compute the score over each node of the provided MultiCTBNC.
compute(Map<String, Double>) - Method in interface es.upm.fi.cig.multictbnc.performance.Metric
Computes the value of the evaluation metric given a Map containing a confusion matrix.
computeScore(BN<? extends Node>, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
Computes the score of a structure given an adjacency matrix.
computeScore(CTBN<? extends Node>, int, boolean[][], Map<Long, Double>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
Computes the score at a certain node given an adjacency matrix.
computeSufficientStatistics(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNSufficientStatistics
Computes the sufficient statistics of a node in a BN.
computeSufficientStatistics(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
Computes the sufficient statistics of a CTBN node.
computeSufficientStatistics(DiscreteStateNode, Dataset) - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.SufficientStatistics
Computes the sufficient statistics of a discrete node.
computeSufficientStatistics(List<Integer>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
computeSufficientStatistics(List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Computes the sufficient statistics for the nodes whose indexes are specified.
ConceptDriftAdaptiveMethod - Class in es.upm.fi.cig.multictbnc.conceptdriftdetection
Abstract class representing a concept drift adaptive method.
ConceptDriftAdaptiveMethod(ConceptDriftScore, List<String>, double, boolean, String) - Constructor for class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftAdaptiveMethod
Initializes the concept drift adaptive method with the specified parameters.
ConceptDriftGloballyAdaptiveMethod - Class in es.upm.fi.cig.multictbnc.conceptdriftdetection
This class implements a concept drift adaptive method that operates globally on a MultiCTBNC model.
ConceptDriftGloballyAdaptiveMethod(List<String>, ConceptDriftScore, double, double, boolean, int, boolean, String) - Constructor for class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftGloballyAdaptiveMethod
Initializes the globally adaptive concept drift method with specified parameters.
ConceptDriftLocallyAdaptiveMethod - Class in es.upm.fi.cig.multictbnc.conceptdriftdetection
This class implements a concept drift adaptive method that operates locally on each node of a MultiCTBNC model.
ConceptDriftLocallyAdaptiveMethod(List<String>, ConceptDriftScore, double, double, boolean, int, boolean, String) - Constructor for class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftLocallyAdaptiveMethod
Initializes the locally adaptive concept drift method with specified parameters.
ConceptDriftScore - Interface in es.upm.fi.cig.multictbnc.conceptdriftdetection
Interface representing scores that can be computed locally on each node of a MultiCTBNC and used to detect concept drifts in a given data batch.
conditionalIndependenceTest(CIMNode, CPTNode, List<CIMNode>) - Static method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
Tests whether a feature and a class variables are conditionally independent given a certain separating set.
ConInd - Class in es.upm.fi.cig.multictbnc.fss
This class implements the ConInd online feature subset selection algorithm from Yu et al. 2018.
ConInd(List<String>, ParameterLearningAlgorithm, int, double, double) - Constructor for class es.upm.fi.cig.multictbnc.fss.ConInd
Constructs a ConInd object.
ConsoleExperimentsWriter - Class in es.upm.fi.cig.multictbnc.writers.performance
Allows writing the results of the experiments through the standard output stream.
ConsoleExperimentsWriter() - Constructor for class es.upm.fi.cig.multictbnc.writers.performance.ConsoleExperimentsWriter
 
containsFeature(String) - Method in class es.upm.fi.cig.multictbnc.fss.SubsetSelectedFeatures
Checks if a specific feature is included in the selected subset.
Controller - Class in es.upm.fi.cig.multictbnc.gui
Controller used to initialise the elements of the GUI and allow the interaction between the logic of the application and the GUI.
Controller() - Constructor for class es.upm.fi.cig.multictbnc.gui.Controller
 
ControllerUtil - Class in es.upm.fi.cig.multictbnc.util
Utility class with methods related to controlling the UI behaviour.
CPTNode - Class in es.upm.fi.cig.multictbnc.nodes
Extends the DiscreteNode class to store a CPT and the sufficient statistics for a BN.
CPTNode(CPTNode) - Constructor for class es.upm.fi.cig.multictbnc.nodes.CPTNode
Constructor that receives a CPTNode and clones it.
CPTNode(String, List<String>) - Constructor for class es.upm.fi.cig.multictbnc.nodes.CPTNode
Constructor that receives the name of the variable and its possible states.
CPTNode(String, List<String>, boolean) - Constructor for class es.upm.fi.cig.multictbnc.nodes.CPTNode
Constructor that receives the name of the variable, a list of strings with its possible states and if it is a class variable.
createEmptyNode(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.NodeFactory
Creates a node from a given one without storing its parameters or sufficient statistics.
createFactory(Class<NodeType>) - Static method in class es.upm.fi.cig.multictbnc.nodes.NodeFactory
Constructs a NodeFactory for nodes whose Class is passed as a parameter.
createNode(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.NodeFactory
Creates a node from a given one.
createNode(String, Dataset) - Method in class es.upm.fi.cig.multictbnc.nodes.NodeFactory
Creates a node given the name of its variable and the dataset where it appears.
createNodes(List<NodeType>) - Method in class es.upm.fi.cig.multictbnc.nodes.NodeFactory
Creates a list of nodes with the same attributes as those provided.
createTask() - Method in class es.upm.fi.cig.multictbnc.services.ClassificationService
 
createTask() - Method in class es.upm.fi.cig.multictbnc.services.EvaluationService
 
createTask() - Method in class es.upm.fi.cig.multictbnc.services.TrainingService
 
createXYLineChart(String, String, String, int[], String...) - Static method in class es.upm.fi.cig.multictbnc.util.UserInterfaceUtil
Creates an XY line chart with the specified parameters.
CrossValidationBinaryRelevanceMethod - Class in es.upm.fi.cig.multictbnc.performance
Implements a cross-validation method used to learn one CTBNC for each class variable and merge the results.
CrossValidationBinaryRelevanceMethod(DatasetReader, int, boolean, boolean, long) - Constructor for class es.upm.fi.cig.multictbnc.performance.CrossValidationBinaryRelevanceMethod
Constructor for cross-validation method.
CrossValidationMethod - Class in es.upm.fi.cig.multictbnc.performance
Implements cross-validation method.
CrossValidationMethod(DatasetReader, int, boolean, boolean, Long) - Constructor for class es.upm.fi.cig.multictbnc.performance.CrossValidationMethod
Constructor for cross-validation method.
CTBN<NodeType extends Node> - Class in es.upm.fi.cig.multictbnc.models
Implements a continuous-time Bayesian network (CTBN).
CTBN(Dataset, List<String>, CTBNLearningAlgorithms, StructureConstraints, BN<? extends Node>, Class<NodeType>) - Constructor for class es.upm.fi.cig.multictbnc.models.CTBN
Initialises a continuous-time Bayesian network given a dataset, the list of variables to use and the algorithms for parameter and structure learning.
CTBN(Dataset, List<String>, CTBNLearningAlgorithms, StructureConstraints, Class<NodeType>) - Constructor for class es.upm.fi.cig.multictbnc.models.CTBN
Initialises a continuous-time Bayesian network given a dataset, the list of variables to use and the algorithms for parameter and structure learning.
CTBN(CTBN<NodeType>, boolean) - Constructor for class es.upm.fi.cig.multictbnc.models.CTBN
Constructor to clone a continuous-time Bayesian network.
CTBN(CTBN<NodeType>, Dataset) - Constructor for class es.upm.fi.cig.multictbnc.models.CTBN
Constructor to clone a continuous-time Bayesian network.
CTBN(List<NodeType>, BN<? extends Node>) - Constructor for class es.upm.fi.cig.multictbnc.models.CTBN
Initialises a continuous-time Bayesian network by receiving a list of nodes and a Bayesian network modelling the class subgraph of a Multi-CTBNC.
CTBN(List<NodeType>, BN<? extends Node>, Dataset) - Constructor for class es.upm.fi.cig.multictbnc.models.CTBN
Initialises a continuous-time Bayesian network by receiving a list of nodes, a Bayesian network modelling the class subgraph of a Multi-CTBNC and a training dataset.
CTBNBayesianEstimation - Class in es.upm.fi.cig.multictbnc.learning.parameters.ctbn
Bayesian parameter estimation for a discrete CTBN.
CTBNBayesianEstimation(double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNBayesianEstimation
Constructs a CTBNBayesianEstimation for the Bayesian estimation of the parameters of a discrete CTBN.
CTBNBayesianScore - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn
Implements the Bayesian Dirichlet equivalence metric for CTBNs with nodes that have CIMs (Nodelman et al., 2003).
CTBNBayesianScore() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNBayesianScore
 
CTBNConditionalLogLikelihood - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn
Implements the conditional log-likelihood score for Multi-CTBNCs with nodes that have CPTs and CIMs to define its bridge and feature subgraph (represented by a CTBN).
CTBNConditionalLogLikelihood(String) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNConditionalLogLikelihood
Receives the name of the penalisation function for the structure complexity.
CTBNHillClimbing - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation
Implements hill climbing algorithm for CTBNs.
CTBNHillClimbing(CTBNScoreFunction) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
Constructor that receives the score function to optimise.
CTBNHillClimbingHybridAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing
Implements the maximisation phase (hill climbing algorithm) of the hybrid structure learning algorithm for continuous-time Bayesian networks.
CTBNHillClimbingHybridAlgorithm(CTBNScoreFunction, boolean[][]) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing.CTBNHillClimbingHybridAlgorithm
Initialises the algorithm by proving a score function and an initial adjacency matrix for the continuous-time Bayesian network.
CTBNHillClimbingIndividual - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation
Implements hill climbing algorithm for CTBNs.
CTBNHillClimbingIndividual(CTBNScoreFunction) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
Constructor that receives the score function to optimise.
CTBNHybridStructureLearningAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.structure.hybrid
Implements the hybrid structure learning algorithm for continuous-time Bayesian networks.
CTBNHybridStructureLearningAlgorithm(CTBNScoreFunction, int, double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
Initialises the hybrid structure learning algorithm receiving significance values, a score function and the maximum size of the separating sets.
CTBNLearningAlgorithms - Class in es.upm.fi.cig.multictbnc.learning
Stores the parameter and structure learning algorithms for a continuous-time Bayesian network.
CTBNLearningAlgorithms(CTBNParameterLearningAlgorithm, StructureLearningAlgorithm) - Constructor for class es.upm.fi.cig.multictbnc.learning.CTBNLearningAlgorithms
Receives the learning algorithms for the parameters and the structure.
CTBNLogLikelihood - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn
Implements the log-likelihood score for CTBNs with nodes that have CIMs.
CTBNLogLikelihood(String) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNLogLikelihood
Receives the name of the penalisation function for the structure complexity.
CTBNMaximumLikelihoodEstimation - Class in es.upm.fi.cig.multictbnc.learning.parameters.ctbn
Maximum likelihood estimation of CTBN parameters.
CTBNMaximumLikelihoodEstimation() - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNMaximumLikelihoodEstimation
 
CTBNParameterLearningAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.parameters.ctbn
Define methods for parameter learning algorithms of continuous-time Bayesian networks.
CTBNParameterLearningAlgorithm() - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
 
CTBNParameterLearningAlgorithmFactory - Class in es.upm.fi.cig.multictbnc.learning.parameters.ctbn
Builds the specified parameter learning algorithm for a CTBN.
CTBNParameterLearningAlgorithmFactory() - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithmFactory
 
CTBNScoreFunction - Interface in es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn
Interface used to define scores for continuous-time Bayesian networks.
CTBNSufficientStatistics - Class in es.upm.fi.cig.multictbnc.learning.parameters.ctbn
Computes and stores the sufficient statistics of a discrete CTBN node.
CTBNSufficientStatistics(double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
Receives the hyperparameters of the Dirichlet prior distribution over the parameters that are necessary for Bayesian estimation.
CTBNTabuSearchIndividual - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch
Implements the tabu search algorithm for continuous-time Bayesian networks.
CTBNTabuSearchIndividual(CTBNScoreFunction, int, int) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.CTBNTabuSearchIndividual
Initialises the tabu search algorithm by proving a score function and a tabu list size.
CTPC - Class in es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC
Implementation of the CTPC algorithm for Multi-CTBNCs.
CTPC(double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
Initialises the CTPC algorithm by providing the significance levels to be used.
CTPCHybridAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC
Implements the restriction phase (CTPC algorithm) of the hybrid structure learning algorithm.
CTPCHybridAlgorithm(int, double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC.CTPCHybridAlgorithm
Initialises the algorithm by proving a significance level.

D

DAG - Class in es.upm.fi.cig.multictbnc.learning.structure.constraints.BN
Defines the restrictions of a general directed acyclic graph.
DAG() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraints.BN.DAG
 
DAG_maxK_MultiCTBNC<NodeTypeBN extends Node,NodeTypeCTBN extends Node> - Class in es.upm.fi.cig.multictbnc.models.submodels
Implements a Multi-CTBNC where the class subgraph is formed by a Bayesian network, while the feature subgraph is a K-dependence continuous-time Bayesian network, i.e., the feature nodes are limited to have K parents (apart of the class variables).
DAG_maxK_MultiCTBNC(BNLearningAlgorithms, CTBNLearningAlgorithms, int, Class<NodeTypeBN>, Class<NodeTypeCTBN>) - Constructor for class es.upm.fi.cig.multictbnc.models.submodels.DAG_maxK_MultiCTBNC
Constructs a DAG_maxK_MultiCTBNC by receiving the learning algorithms for Bayesian networks and continuous-time Bayesian networks and the maximum number of parents of the feature variables (apart from the class variables).
DataSampler - Class in es.upm.fi.cig.multictbnc.sampling
Implements methods for the generation and writing of datasets sampled from Multi-CTBNCs.
DataSampler() - Constructor for class es.upm.fi.cig.multictbnc.sampling.DataSampler
 
Dataset - Class in es.upm.fi.cig.multictbnc.data.representation
Represents a time series dataset, which stores sequences and provides methods to access and modify their information.
Dataset(String) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Dataset
Creates an empty dataset with the name of the time variable.
Dataset(String, List<String>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Dataset
Creates an empty dataset with the names of the time variable and class variables.
Dataset(List<Sequence>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Dataset
Creates a dataset with a list of sequences.
datasetClassificationModified() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
The information of the dataset used for classification was modified, so its DatasetReader is warned.
datasetModified() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
The information of the dataset for training/evaluation was modified, so its DatasetReader is warned.
DatasetReader - Interface in es.upm.fi.cig.multictbnc.data.reader
Interface for classes that read datasets.
DatasetReaderFactory - Class in es.upm.fi.cig.multictbnc.data.reader
Creates dataset readers.
DatasetReaderFactory() - Constructor for class es.upm.fi.cig.multictbnc.data.reader.DatasetReaderFactory
 
DataStreamExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments
Represents an experiment for evaluating continuous-time Bayesian network classifiers on streaming data.
DataStreamExperiment() - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
 
DataStreamMultipleCSVReader - Class in es.upm.fi.cig.multictbnc.data.reader
The class is designed for reading and processing streaming data from multiple CSV files.
DataStreamMultipleCSVReader(String, String, List<String>) - Constructor for class es.upm.fi.cig.multictbnc.data.reader.DataStreamMultipleCSVReader
This constructor prepares the reader to process CSV files from the specified folder.
detectChange(double) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.PageHinkleyTest
Detects concept drifts based on a new observation.
detectNewFeatureVariables(File) - Method in class es.upm.fi.cig.multictbnc.data.reader.DataStreamMultipleCSVReader
Extracts the names of the variables from a CSV file.
Digraph - Class in es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC
Specifies the structure restrictions of a CTBN.
Digraph() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.Digraph
 
DiscreteStateNode - Class in es.upm.fi.cig.multictbnc.nodes
Abstract class defining common variables and methods for discrete nodes.
DiscreteStateNode(String, List<String>) - Constructor for class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
Initialises a discrete node given a list of states.
DiscreteStateNode(String, List<String>, boolean) - Constructor for class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
Initialises a discrete node specifying if the node is for a class variable or a feature.
display() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
display() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Displays the probabilistic graphical model.
display(String) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
display(String) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Displays the probabilistic graphical model.
display(String, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
display(String, List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Displays the probabilistic graphical model.
displayModel(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.ValidationMethod
Displays the model obtained with the validation method.
displayResults(Map<String, Double>) - Method in class es.upm.fi.cig.multictbnc.performance.ValidationMethod
Displays the results obtained with the validation method.

E

Empty_digraph_MultiCTBNC<NodeTypeBN extends Node,NodeTypeCTBN extends Node> - Class in es.upm.fi.cig.multictbnc.models.submodels
Implements a Multi-CTBNC with an empty class subgraph.
Empty_digraph_MultiCTBNC(BNLearningAlgorithms, CTBNLearningAlgorithms, Class<NodeTypeBN>, Class<NodeTypeCTBN>) - Constructor for class es.upm.fi.cig.multictbnc.models.submodels.Empty_digraph_MultiCTBNC
Constructs a Empty_digraph_MultiCTBNC by receiving the learning algorithms for Bayesian networks and continuous-time Bayesian networks.
Empty_maxK_MultiCTBNC<NodeTypeBN extends Node,NodeTypeCTBN extends Node> - Class in es.upm.fi.cig.multictbnc.models.submodels
Implements a Multi-CTBNC with an empty class subgraph and a K-dependence continuous-time Bayesian network for the feature subgraph, i.e., the feature nodes are limited to having K parents (apart of the class variables).
Empty_maxK_MultiCTBNC(BNLearningAlgorithms, CTBNLearningAlgorithms, int, Class<NodeTypeBN>, Class<NodeTypeCTBN>) - Constructor for class es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC
Constructs a Empty_maxK_Multi-CTBNC by receiving the learning algorithms for Bayesian networks and continuous-time Bayesian networks and the maximum number of parents of the features (apart of the class variables).
EmptyBN - Class in es.upm.fi.cig.multictbnc.learning.structure.constraints.BN
It only allows the creation of empty BNs.
EmptyBN() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraints.BN.EmptyBN
 
equals(Object) - Method in class es.upm.fi.cig.multictbnc.data.representation.State
 
equals(Object) - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
ErroneousSequenceException - Exception in es.upm.fi.cig.multictbnc.exceptions
Thrown when a valid sequence could not be created with the provided data.
ErroneousSequenceException(String) - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.ErroneousSequenceException
Constructs a ErroneousSequenceException with the specified detail message.
ErroneousValueException - Exception in es.upm.fi.cig.multictbnc.exceptions
Thrown when an error occurs due to an incorrect value provided by the user.
ErroneousValueException(String) - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.ErroneousValueException
Constructs a ErroneousValue with the specified detail message.
es.upm.fi.cig.multictbnc - module es.upm.fi.cig.multictbnc
 
es.upm.fi.cig.multictbnc - package es.upm.fi.cig.multictbnc
 
es.upm.fi.cig.multictbnc.classification - package es.upm.fi.cig.multictbnc.classification
 
es.upm.fi.cig.multictbnc.conceptdriftdetection - package es.upm.fi.cig.multictbnc.conceptdriftdetection
 
es.upm.fi.cig.multictbnc.data.reader - package es.upm.fi.cig.multictbnc.data.reader
 
es.upm.fi.cig.multictbnc.data.representation - package es.upm.fi.cig.multictbnc.data.representation
 
es.upm.fi.cig.multictbnc.data.writer - package es.upm.fi.cig.multictbnc.data.writer
 
es.upm.fi.cig.multictbnc.exceptions - package es.upm.fi.cig.multictbnc.exceptions
 
es.upm.fi.cig.multictbnc.experiments - package es.upm.fi.cig.multictbnc.experiments
 
es.upm.fi.cig.multictbnc.experiments.implementationsexperiments - package es.upm.fi.cig.multictbnc.experiments.implementationsexperiments
 
es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments - package es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
 
es.upm.fi.cig.multictbnc.fss - package es.upm.fi.cig.multictbnc.fss
 
es.upm.fi.cig.multictbnc.gui - package es.upm.fi.cig.multictbnc.gui
 
es.upm.fi.cig.multictbnc.learning - package es.upm.fi.cig.multictbnc.learning
 
es.upm.fi.cig.multictbnc.learning.parameters - package es.upm.fi.cig.multictbnc.learning.parameters
 
es.upm.fi.cig.multictbnc.learning.parameters.bn - package es.upm.fi.cig.multictbnc.learning.parameters.bn
 
es.upm.fi.cig.multictbnc.learning.parameters.ctbn - package es.upm.fi.cig.multictbnc.learning.parameters.ctbn
 
es.upm.fi.cig.multictbnc.learning.structure - package es.upm.fi.cig.multictbnc.learning.structure
 
es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC - package es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC
 
es.upm.fi.cig.multictbnc.learning.structure.constraints - package es.upm.fi.cig.multictbnc.learning.structure.constraints
 
es.upm.fi.cig.multictbnc.learning.structure.constraints.BN - package es.upm.fi.cig.multictbnc.learning.structure.constraints.BN
 
es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC - package es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC
 
es.upm.fi.cig.multictbnc.learning.structure.hybrid - package es.upm.fi.cig.multictbnc.learning.structure.hybrid
 
es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing - package es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing
 
es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC - package es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC
 
es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing - package es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing
 
es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation - package es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation
 
es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores - package es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores
 
es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn - package es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn
 
es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn - package es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn
 
es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch - package es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch
 
es.upm.fi.cig.multictbnc.models - package es.upm.fi.cig.multictbnc.models
 
es.upm.fi.cig.multictbnc.models.submodels - package es.upm.fi.cig.multictbnc.models.submodels
 
es.upm.fi.cig.multictbnc.nodes - package es.upm.fi.cig.multictbnc.nodes
 
es.upm.fi.cig.multictbnc.performance - package es.upm.fi.cig.multictbnc.performance
 
es.upm.fi.cig.multictbnc.sampling - package es.upm.fi.cig.multictbnc.sampling
 
es.upm.fi.cig.multictbnc.services - package es.upm.fi.cig.multictbnc.services
 
es.upm.fi.cig.multictbnc.tasks - package es.upm.fi.cig.multictbnc.tasks
 
es.upm.fi.cig.multictbnc.util - package es.upm.fi.cig.multictbnc.util
 
es.upm.fi.cig.multictbnc.writers.classification - package es.upm.fi.cig.multictbnc.writers.classification
 
es.upm.fi.cig.multictbnc.writers.performance - package es.upm.fi.cig.multictbnc.writers.performance
 
estimateLogLikelihood() - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
 
estimateLogLikelihood() - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
 
estimateLogLikelihood() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Returns the local log-likelihood for the node.
estimateParameters(CIMNode) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
Estimates the parameters for a given node from its computed sufficient statistics.
evaluate() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
Evaluates the selected model.
evaluate(Prediction[], Dataset) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
Uses different performance metrics to evaluate how good the given predictions are.
evaluate(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.CrossValidationBinaryRelevanceMethod
Evaluates the performance of the specified model using cross-validation.
evaluate(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.CrossValidationMethod
Evaluates the performance of the specified model using cross-validation.
evaluate(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.HoldOutMethod
Evaluates the performance of the specified model using hold-out validation.
evaluate(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.TestDatasetBinaryRelevanceMethod
 
evaluate(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.TestDatasetMethod
 
evaluate(MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.performance.ValidationMethod
Evaluates the performance of the specified model and returns the results.
evaluate(MultiCTBNC<?, ?>, double) - Method in class es.upm.fi.cig.multictbnc.performance.CrossValidationBinaryRelevanceMethod
 
evaluate(MultiCTBNC<?, ?>, double) - Method in class es.upm.fi.cig.multictbnc.performance.CrossValidationMethod
 
evaluate(MultiCTBNC<?, ?>, double) - Method in class es.upm.fi.cig.multictbnc.performance.HoldOutMethod
 
evaluate(MultiCTBNC<?, ?>, double) - Method in class es.upm.fi.cig.multictbnc.performance.TestDatasetBinaryRelevanceMethod
 
evaluate(MultiCTBNC<?, ?>, double) - Method in class es.upm.fi.cig.multictbnc.performance.TestDatasetMethod
 
evaluate(MultiCTBNC<?, ?>, double) - Method in class es.upm.fi.cig.multictbnc.performance.ValidationMethod
Evaluates the performance of the specified model and returns the results.
EvaluationService - Class in es.upm.fi.cig.multictbnc.services
Service that creates and manages an EvaluationTask.
EvaluationService() - Constructor for class es.upm.fi.cig.multictbnc.services.EvaluationService
 
EvaluationTask - Class in es.upm.fi.cig.multictbnc.tasks
Task that allows executing the training and evaluation of a model in a background thread.
EvaluationTask(ValidationMethod, MultiCTBNC<?, ?>) - Constructor for class es.upm.fi.cig.multictbnc.tasks.EvaluationTask
Constructs an EvaluationTask that receives a ValidationMethod and an MultiCTBNC model.
ExcelExperimentsWriter - Class in es.upm.fi.cig.multictbnc.writers.performance
Allows writing the results of the experiments in an Excel file.
ExcelExperimentsWriter(List<String>, List<String>, List<String>, List<String>, BNParameterLearningAlgorithm, CTBNParameterLearningAlgorithm, String, double, double, double, List<Long>, String) - Constructor for class es.upm.fi.cig.multictbnc.writers.performance.ExcelExperimentsWriter
Initialises the writer.
ExcelExperimentsWriter(List<String>, List<String>, List<String>, List<String>, List<String>, BNParameterLearningAlgorithm, CTBNParameterLearningAlgorithm, String, String, List<Long>, String) - Constructor for class es.upm.fi.cig.multictbnc.writers.performance.ExcelExperimentsWriter
Initialises the writer.
execute() - Method in interface es.upm.fi.cig.multictbnc.experiments.Experiment
Executes the experiment.
execute() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.LearningStreamExperiment
 
execute() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.ModelComparisonExperiment
 
execute() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.StructureLearningAlgorithmsComparisonExperiment
 
execute(MultiCTBNC<CPTNode, CIMNode>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamAsStaticDatasetExperiment
 
execute(MultiCTBNC<CPTNode, CIMNode>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamImplementationExperiment
Executes the experiment.
execute(MultiCTBNC<CPTNode, CIMNode>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithFSSExperiment
 
execute(MultiCTBNC<CPTNode, CIMNode>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithFSSWithoutUpdatingExperiment
 
execute(MultiCTBNC<CPTNode, CIMNode>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithoutFSSExperiment
 
execute(String, Dataset) - Method in class es.upm.fi.cig.multictbnc.fss.ConInd
 
execute(String, Dataset) - Method in interface es.upm.fi.cig.multictbnc.fss.OnlineFeatureSubsetSelection
Executes the feature subset selection algorithm for a newly arrived feature variable in a given data batch.
executeExperiment(String, double) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
Executes a single data stream experiment for a specified path and detection threshold.
executeExperiment(String, String) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.FeatureStreamExperiment
Executes a single feature stream experiment for a specified path.
executeExperiment(String, String, double, double) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.FeatureStreamExperiment
Executes a single feature stream experiment.
Experiment - Interface in es.upm.fi.cig.multictbnc.experiments
Represents an experiment that can be executed.
ExperimentFactory - Class in es.upm.fi.cig.multictbnc.experiments
A factory class for creating instances of experiments based on provided arguments.
ExperimentFactory() - Constructor for class es.upm.fi.cig.multictbnc.experiments.ExperimentFactory
 
extractDecimal(String, double) - Static method in class es.upm.fi.cig.multictbnc.util.ControllerUtil
Receives an String and tries to convert it to a double.
extractFirstLong(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Returns the first long in a String.
extractFixedSequences(Dataset, List<String[]>) - Method in class es.upm.fi.cig.multictbnc.data.reader.SingleCSVReader
Extracts sequences that have the same maximum length and add them to the specified dataset.
extractFixedSequencesSameCC(Dataset, List<String[]>) - Method in class es.upm.fi.cig.multictbnc.data.reader.SingleCSVReader
Extracts sequences that have the same maximum length and add them to the specified dataset.
extractInt(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Returns an int from a String.
extractInteger(String, int) - Static method in class es.upm.fi.cig.multictbnc.util.ControllerUtil
Receives an String and tries to convert it to an Integer.
extractLong(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Returns a long from a String.
extractPathExperimentDatasets(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Returns the path to the datasets given the folder of a experiment.
extractVariableNames(File) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
Extracts the names of the variables given in some CSV files.
extremeProbability() - Static method in class es.upm.fi.cig.multictbnc.util.ProbabilityUtil
Returns a probability between 0 or 0.3, or between 0.7 and 1.

F

f1score(Map<String, Double>) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
Compute the F1 score from a Map containing a confusion matrix.
failed() - Method in class es.upm.fi.cig.multictbnc.tasks.ClassificationTask
 
failed() - Method in class es.upm.fi.cig.multictbnc.tasks.EvaluationTask
 
failed() - Method in class es.upm.fi.cig.multictbnc.tasks.TrainingTask
 
FeatureStreamAsStaticDatasetExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
Implements an experiment where a feature stream is treated as a static dataset.
FeatureStreamAsStaticDatasetExperiment(String, String, List<String>, DatasetReader, DatasetReader, int, int, boolean) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamAsStaticDatasetExperiment
Constructs a FeatureStreamAsStaticDatasetExperiment with the specified parameters.
FeatureStreamExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments
Represents an experiment for evaluating continuous-time Bayesian network classifiers on feature streams.
FeatureStreamExperiment() - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.FeatureStreamExperiment
 
FeatureStreamExperimentFactory - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
Factory class for creating specific types of feature stream experiments.
FeatureStreamExperimentFactory() - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamExperimentFactory
 
FeatureStreamImplementationExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
Abstract class representing an implementation of an experiment with feature streams.
FeatureStreamImplementationExperiment(String, String, List<String>, DatasetReader, DatasetReader, int, int, boolean) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamImplementationExperiment
Constructs a FeatureStreamImplementationExperiment with the specified parameters.
FeatureStreamMultipleCSVReader - Class in es.upm.fi.cig.multictbnc.data.reader
Class responsible for reading multiple CSV files representing a feature stream.
FeatureStreamMultipleCSVReader(String, Dataset, String) - Constructor for class es.upm.fi.cig.multictbnc.data.reader.FeatureStreamMultipleCSVReader
Constructs a FeatureStreamMultipleCSVReader with the specified path to the feature stream, a current dataset and the name of the time variable.
FeatureStreamWithFSSExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
Represents an experiment that processes a feature stream with online feature subset selection using a MultiCTBNC.
FeatureStreamWithFSSExperiment(String, String, List<String>, DatasetReader, DatasetReader, CTBNParameterLearningAlgorithm, int, int, int, boolean, double, double) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithFSSExperiment
Initializes a FeatureStreamWithFSSExperiment with the provided configuration parameters.
FeatureStreamWithFSSWithoutUpdatingExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
Represents an experiment for processing a feature stream dataset with online feature subset selection without updating the model.
FeatureStreamWithFSSWithoutUpdatingExperiment(String, String, List<String>, DatasetReader, DatasetReader, CTBNParameterLearningAlgorithm, int, int, int, boolean, double, double) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithFSSWithoutUpdatingExperiment
Initializes a FeatureStreamWithFSSWithoutUpdatingExperiment with the provided configuration parameters.
FeatureStreamWithoutFSSExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments
Represents an experiment for processing a feature stream dataset without online feature subset selection but with model updates.
FeatureStreamWithoutFSSExperiment(String, String, List<String>, DatasetReader, DatasetReader, int, int, boolean) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithoutFSSExperiment
Initializes a FeatureStreamWithoutFSSExperiment with the provided configuration parameters.
featureSubsetSelectionGivenClassVariable(String, Dataset) - Method in class es.upm.fi.cig.multictbnc.fss.ConInd
Performs feature subset selection given a new feature variable.
fill2dArray(double[][], double) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Fills a two-dimensional double array with the provided double.
fill3dArray(double[][][], double) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Fills a three-dimensional double array with the provided double.
filter(List<T>, List<T>) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Returns the elements of a list "a" except those in "b".
filter(List<T>, T) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Returns the elements of a list "a" except "b".
findBestNeighbor(BN<? extends Node>, HillClimbingSolution, double[], boolean[][][], String) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing.BNHillClimbingHybridAlgorithm
 
findBestNeighbor(BN<? extends Node>, HillClimbingSolution, double[], boolean[][][], String) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
Finds the best neighbour of the adjacency matrix "bestStructure" given an operation to perform (addition, deletion or reversal of arcs).
findBestNeighbor(BN<? extends Node>, HillClimbingSolution, double[], boolean[][][], String) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.BNTabuSearch
 
findBestNeighbor(CTBN<? extends Node>, int, boolean[][], Map<Long, Double>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing.CTBNHillClimbingHybridAlgorithm
 
findBestNeighbor(CTBN<? extends Node>, int, boolean[][], Map<Long, Double>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
Finds the best neighbour for a CTBN node.
findBestNeighbor(CTBN<? extends Node>, int, boolean[][], Map<Long, Double>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.CTBNTabuSearchIndividual
 
findStructure() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.FirstChoiceHillClimbing
 
findStructure() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
Performs greedy Hill climbing to find a better structure than the initial one.
findStructure() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.RandomRestartHillClimbing
 
findStructure(int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.FirstChoiceHillClimbing
 
findStructure(int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
Performs greedy Hill climbing to find a better local structure for a given node.
findStructure(int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.RandomRestartHillClimbing
 
findStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.hillclimbing.BNHillClimbingHybridAlgorithm
 
findStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
 
findStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
 
findStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
 
findStructure(PGM<? extends Node>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.HillClimbingImplementation
Finds a structure for a given PGM.
findStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.BNTabuSearch
 
findStructure(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
 
findStructure(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
 
findStructure(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
 
findStructure(PGM<? extends Node>, int) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.HillClimbingImplementation
Finds the local structure of a given node of a PGM.
findStructure(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
 
findStructure(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
 
findStructure(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
 
findStructure(PGM<? extends Node>, List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.HillClimbingImplementation
Finds the local structure of some given nodes of a PGM.
findStructure(List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.FirstChoiceHillClimbing
 
findStructure(List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
Performs greedy Hill climbing to find a better local structure for some given nodes.
findStructure(List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.RandomRestartHillClimbing
 
findStructureNode(CTBN<? extends Node>, int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
Optimises the function score to find the parent set of a given node.
findStructureNode(CTBN<? extends Node>, int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.CTBNTabuSearchIndividual
 
FirstChoiceHillClimbing - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing
Implements first-choice Hill Climbing.
FirstChoiceHillClimbing(HillClimbingImplementation) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.FirstChoiceHillClimbing
Constructs a FirstChoiceHillClimbing by receiving the implementation of the hill climbing algorithm (for a Bayesian network, continuous-time Bayesian network...).

G

generateDataset(MultiCTBNC<CPTNode, CIMNode>, int, double, boolean, String) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
Sample a dataset from the provided model.
generateDataset(MultiCTBNC<CPTNode, CIMNode>, int, double, double, double, String) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
Sample a dataset from the provided model.
generateModel(int, int, int, int, double, double, double, int, int, int, boolean, boolean, boolean[][]) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
Generates a Multi-CTBNC that can be used to sample data.
generateModifiedModel(MultiCTBNC<CPTNode, CIMNode>, int, boolean, int, int, int, double, String) - Static method in class es.upm.fi.cig.multictbnc.sampling.MainDataStreamSampling.MainDataStreamSamplingFX
Generates a modified Multi-CTBNC to simulate concept drift.
generateRandomCIM(CIMNode, double, double) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
Generate a uniformly distributed random conditional intensity matrix for a node of a continuous-time Bayesian network.
generateRandomCIMs(CTBN<CIMNode>, double, double) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
Generate uniformly distributed random conditional intensity matrices for a continuous-time Bayesian network.
generateRandomCPT(CPTNode, boolean) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
Generate an uniformly distributed random conditional probability table for a Bayesian network node.
generateRandomCPTs(BN<CPTNode>, boolean) - Static method in class es.upm.fi.cig.multictbnc.sampling.DataSampler
Generate uniformly distributed random conditional probability tables for a Bayesian network.
generateTrainAndTest() - Method in class es.upm.fi.cig.multictbnc.performance.HoldOutMethod
Generates a training and a test dataset.
getAdjacencyMatrix() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
Returns the adjacency matrix of the structure.
getAdjacencyMatrix() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Returns the adjacency matrix of the PGM by analysing the parents of each node.
getAdjacencyMatrix() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Returns the adjacency matrix.
getAlgorithm(String, Double) - Static method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithmFactory
Build the specified parameter learning algorithm.
getAlgorithm(String, Double, Double) - Static method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithmFactory
Builds the specified parameter learning algorithm.
getAlgorithmBN(String, Map<String, String>) - Static method in class es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithmFactory
Builds the specified structure learning algorithm for Bayesian networks.
getAlgorithmCTBN(String, Map<String, String>) - Static method in class es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithmFactory
Builds the specified structure learning algorithm for continuous-time Bayesian networks.
getAvailableDatasetReaders() - Static method in class es.upm.fi.cig.multictbnc.data.reader.DatasetReaderFactory
Returns the name of available dataset readers.
getAvailableLearningMethods() - Static method in class es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithmFactory
Returns the name of available optimisation methods.
getAvailableModels() - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
Returns a list with the currently available classifiers.
getAvailableStrategies() - Static method in class es.upm.fi.cig.multictbnc.data.reader.DatasetReaderFactory
Returns the name of available strategies for the extraction of sequences.
getBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns the Bayesian network used to model the class subgraph of the Multi-CTBNC.
getBnClassSubgraph() - Method in class es.upm.fi.cig.multictbnc.models.CTBN
Returns the class subgraph (Bayesian network).
getChildren() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
getChildren() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Returns the children of the node.
getClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns a Map object with the class variables' names and values.
getCP(int, int) - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
Returns the conditional probability of a state of the node given the state of the parents.
getCPT() - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
Returns the conditional probability table (CPT) of the node.
getCTBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns the continuous-time Bayesian network used to model the bridge and feature subgraphs of the Multi-CTBNC.
getDataset() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Returns the dataset used to learn the PGM.
getDatasetReader(String, String, int) - Static method in class es.upm.fi.cig.multictbnc.data.reader.DatasetReaderFactory
Generates the correct dataset reader for the given dataset path.
getEdgesPGM(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
Retrieves all possible edges between nodes of a PGM.
getEntryLargestValue(Map<k, v>) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Returns entry with the largest value of a Map.
getEvents() - Method in class es.upm.fi.cig.multictbnc.data.representation.State
Returns the events of the state.
getExecutionTime() - Method in class es.upm.fi.cig.multictbnc.fss.SubsetSelectedFeatures
Retrieves the execution time of the FSS algorithm.
getExperiment(String...) - Static method in class es.upm.fi.cig.multictbnc.experiments.ExperimentFactory
Gets an instance of an experiment based on the provided arguments.
getExperimentConfig() - Method in class es.upm.fi.cig.multictbnc.experiments.AbstractExperiment
Retrieves the queue of experiment configuration parameters.
getFeatures() - Method in class es.upm.fi.cig.multictbnc.fss.SubsetSelectedFeatures
Provides the list of features selected by the FSS algorithm.
getFeatureStreamImplementation(String, String, String, List<String>, DatasetReader, DatasetReader, CTBNParameterLearningAlgorithm, int, int, int, boolean, double, double) - Static method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamExperimentFactory
Creates an instance of a feature stream experiment based on the specified type of processing.
getFilenameResults() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamAsStaticDatasetExperiment
 
getFilenameResults() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamImplementationExperiment
Provides the filename for storing results.
getFilenameResults() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithFSSExperiment
 
getFilenameResults() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithFSSWithoutUpdatingExperiment
 
getFilenameResults() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.featurestreamexperiments.FeatureStreamWithoutFSSExperiment
 
getFilePath() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the path of the file from which the sequence was extracted.
getHyperparameters() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Returns the hyperparameters of the model the user sets.
getHyperparameters() - Method in class es.upm.fi.cig.multictbnc.models.submodels.DAG_maxK_MultiCTBNC
 
getHyperparameters() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNBayesianEstimation
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNMaximumLikelihoodEstimation
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNBayesianEstimation
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNMaximumLikelihoodEstimation
 
getIdentifier() - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.ParameterLearningAlgorithm
Returns a unique identifier for the parameter learning algorithm.
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.BNHybridStructureLearningAlgorithm
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
 
getIdentifier() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.HillClimbingImplementation
Returns a unique identifier for the hill climbing-based algorithm.
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.RandomRestartHillClimbing
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNBayesianScore
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNLogLikelihood
 
getIdentifier() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNScoreFunction
Gets an identifier for the score function.
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNBayesianScore
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNConditionalLogLikelihood
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNLogLikelihood
 
getIdentifier() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNScoreFunction
Gets an identifier for the score function.
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.BNTabuSearch
 
getIdentifier() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.CTBNTabuSearchIndividual
 
getIdentifier() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithm
Returns a unique identifier for the structure learning algorithm.
getIdxFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Retrieves the mapping of feature variable names to their indexes within the sequence.
getIdxFeatureVariables(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
Returns the indexes of the feature nodes in a PGM.
getIdxFeatureVariables(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.OnlineMarkovBlanketCTPC
Retrieves the index nodes representing feature variables from a given list of index nodes.
getIdxParentsNode(int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
Returns the indexes of a node's parents.
getIdxState() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
Gets the index of the current state of the node.
getIdxStateParents() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
Gets the index for the current state of the node's parents.
getIdxStateParents(List<String>) - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
Gets the index for the current state of the specified parents of the node.
getIndexLargestValue(double[]) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Returns the index of the largest value in an array.
getIndexNodeByName(String) - Method in class es.upm.fi.cig.multictbnc.nodes.NodeIndexer
Returns the index of a node whose name is provided.
getIndexNodes() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
getIndexNodes() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Returns the indexes of the nodes.
getIndexNodes() - Method in class es.upm.fi.cig.multictbnc.nodes.NodeIndexer
Returns the indexes of all the nodes.
getIndexOfNode(Node) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
getIndexOfNode(Node) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Returns the index of the provided node.
getInfoScoreFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
 
getInfoScoreFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
 
getInfoScoreFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
 
getInfoScoreFunction() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.HillClimbingImplementation
Returns a Map with the name of the score function that is optimised and the name of the applied penalisation function (if any).
getInitialStructure() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Return the name of the initial structure of the model.
getLabelPowerset() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Returns a multi-class dataset generated from the multidimensional dataset.
getLastChangedNodes() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftAdaptiveMethod
Retrieves the list of nodes that were last identified as having undergone concept drift.
getLastChangedNodes() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftGloballyAdaptiveMethod
 
getLastChangedNodes() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftLocallyAdaptiveMethod
 
getLastExecutionYieldAnyChange() - Method in class es.upm.fi.cig.multictbnc.fss.ConInd
Returns whether the last execution of the feature subset selection algorithm resulted in any changes.
getLastExecutionYieldAnyChange() - Method in interface es.upm.fi.cig.multictbnc.fss.OnlineFeatureSubsetSelection
Returns a boolean indicating whether the last execution of the feature subset selection algorithm resulted in any changes to the selected feature subset.
getLearningAlgsBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns learning algorithms for class subgraph (Bayesian network).
getLearningAlgsCTBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns learning algorithms for bridge and features subgraphs (continuous time Bayesian network).
getLearntNodes() - Method in class es.upm.fi.cig.multictbnc.models.BN
Returns the nodes with the learnt parameters.
getMaxValue(double...) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Returns the maximum value between those passed as parameters
getMeanGlobalAccuracy() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
Retrieves the mean global accuracy across all processed data batches.
getMeanGlobalBrierScore() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
Retrieves the mean global Brier score across all processed data batches.
getMeanMacroAveragedF1Score() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
Retrieves the mean macro-averaged F1 score across all processed data batches.
getMeanMeanAccuracy() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
Retrieves the average mean accuracy across all processed data batches.
getMeanMicroAveragedF1Score() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
Retrieves the mean micro-averaged F1 score across all processed data batches.
getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.BN
 
getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.CTBN
 
getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
 
getModelIdentifier() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Returns a String that identifies the model.
getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.submodels.DAG_maxK_MultiCTBNC
 
getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_digraph_MultiCTBNC
 
getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC
 
getModelIdentifier() - Method in class es.upm.fi.cig.multictbnc.models.submodels.MultiCTNBC
 
getModifiedArcs() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
Returns the last arc modified.
getMultiCTBNC() - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
Generates a Multi-CTBNC including some default nodes and algorithms for the learning of its parameters and structure.
getMultiCTBNC(String, BNLearningAlgorithms, CTBNLearningAlgorithms) - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
Builds the specified classifier.
getMultiCTBNC(String, BNLearningAlgorithms, CTBNLearningAlgorithms, Map<String, String>) - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
Builds the specified classifier with the provided hyperparameters.
getMultiCTBNC(String, BNLearningAlgorithms, CTBNLearningAlgorithms, Map<String, String>, Class<NodeTypeBN>, Class<NodeTypeCTBN>) - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
Builds the specified classifier with the provided hyperparameters.
getMultiCTBNCLearnedWithCTPC() - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
Generates a Multi-CTBNC including some default nodes and algorithms for the learning of its parameters and structure.
getMultiCTBNCLearnedWithHybridAlgorithm() - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
Generates a Multi-CTBNC including some default nodes and algorithms for the learning of its parameters and structure.
getMultiCTBNCLearnedWithMBCTPC() - Static method in class es.upm.fi.cig.multictbnc.classification.ClassifierFactory
Generates a Multi-CTBNC including some default nodes and algorithms for the learning of its parameters and structure.
getMx() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
Returns the sufficient statistic with the number of times the variable leaves every state (i.e., the state changes) while its parents have certain values.
getMxHyperparameter() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
Returns the value of the hyperparameter with the number of 'imaginary' transitions that occurred from a certain state before seeing the data.
getMxy() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
Returns the sufficient statistic with the number of times the variable transition from a certain state to another while its parents have certain values
getMxyHyperparameter() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
Returns the value of the hyperparameter with the number of 'imaginary' transitions that occurred from a certain state to another before seeing the data.
getName() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
getName() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Returns the name of the node.
getNameAllVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Returns the name of all the variables, including the time variable.
getNameAllVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the name of all the variables, including the time variable.
getNameClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
 
getNameClassVariables() - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Returns the name of the class variables.
getNameClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Returns the name of the class variables.
getNameClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the names of the class variables.
getNameFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
 
getNameFeatureVariables() - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Returns the name of the feature variables.
getNameFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Returns the names of the feature variables.
getNameFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the names of the feature variables.
getNameFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns the names of the feature variables.
getNameLastFeatureReceived() - Method in class es.upm.fi.cig.multictbnc.data.reader.FeatureStreamMultipleCSVReader
Retrieves the name of the last feature variable received from the feature stream.
getNameMethod() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNBayesianEstimation
 
getNameMethod() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNMaximumLikelihoodEstimation
 
getNameMethod() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNBayesianEstimation
 
getNameMethod() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNMaximumLikelihoodEstimation
 
getNameMethod() - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.ParameterLearningAlgorithm
Gets the name of the method to learn the parameters.
getNamePenalisationFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.AbstractLikelihood
Returns the name of the penalisation function.
getNamePenalisationFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNBayesianScore
 
getNamePenalisationFunction() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.bn.BNScoreFunction
Gets the name of the penalisation applied (if any) to the score function.
getNamePenalisationFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNBayesianScore
 
getNamePenalisationFunction() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNScoreFunction
Gets the name of the penalisation applied (if any) to the score function.
getNamesNodesByIndex(List<Integer>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
getNamesNodesByIndex(List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Return the names of the nodes whose indexes are given.
getNameTimeVariable() - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
 
getNameTimeVariable() - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Returns the name of the time variable.
getNameTimeVariable() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Returns the name of the time variable.
getNameTimeVariable() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the name of the time variable.
getNameVariables() - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
 
getNameVariables() - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Returns the names of all the variables of the dataset, including those that are not used.
getNameVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Returns the name of all the variables except the time variable.
getNameVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.State
Returns the names of the variables collected by the State object.
getNameVariables() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Returns the names of the variables of the PGM.
getNodeByIndex(int) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
getNodeByIndex(int) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Obtains the node (feature or class variable) with a certain index.
getNodeByIndex(int) - Method in class es.upm.fi.cig.multictbnc.nodes.NodeIndexer
Returns the name of a node whose index is provided.
getNodeByName(String) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
getNodeByName(String) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Returns the node whose variable name is given.
getNodeClass() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Returns the type of the nodes.
getNodeFactory() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Returns a NodeFactory for the nodes of the PGM.
getNodeIndexer() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Returns the node indexer of the model.
getNodeIndexer() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Returns the node indexer used by the PGM.
getNodes() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
getNodes() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
 
getNodes() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Returns all the nodes in the model.
getNodesClassVariables() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns the list of nodes for the class variables.
getNodesCTBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns the nodes of the continuous-time Bayesian network modelling the feature and bridge subgraphs of the Multi-CTBNC.
getNodesCTBNInMarkovBlanketClassVariables() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns the nodes of the continuous-time Bayesian network modelling the feature and bridge subgraphs of the Multi-CTBNC, which are in the Markov blaket of at least one class variable.
getNodesFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns the list of nodes for the feature variables.
getNumClassAndFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the total number of class and feature variables in the sequence.
getNumClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Returns the number of class variables.
getNumClassVariables() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns the number of nodes for the class variables.
getNumDataPoints() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Returns the number of data points.
getNumEdgesTested() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
Returns the number of edges that have been evaluated so far.
getNumFeatureVariables() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns the number of nodes for the feature variables.
getNumNodes() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
getNumNodes() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Returns the number of nodes.
getNumObservation() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Returns the number of observations in the dataset, i.e., the number of observations that occur in all the sequences.
getNumObservations() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the number of observations that the sequence contains.
getNumParents() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
getNumParents() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Returns the number of parents of the node.
getNumStates() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
Returns the number of possible states of the node.
getNumStatesParents() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
Returns the number of possible states of the parents of the node.
getNumTimesModelUpdated() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
Retrieves the number of times the model was updated during the experiment.
getNx() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNSufficientStatistics
Returns the sufficient statistics of the node.
getNxHyperparameter() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNSufficientStatistics
Returns the hyperparameter value of the Dirichlet prior distribution.
getOxy() - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
Return matrix with the probabilities of the variable leaving a certain state for another one while their parents take a certain instantiation
getOxy(int, int, int) - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
Returns the probability of the variable leaving a state for a certain one given the state of its parents
getPageHinkleyValue() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.PageHinkleyTest
Returns the last Page Hinkley value calculated.
getParameterLearningAlg() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
getParameterLearningAlg() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Returns the algorithm that is used to learn the parameters of the PGM.
getParameterLearningAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.BNLearningAlgorithms
Returns the parameter learning algorithm for a BN.
getParameterLearningAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.CTBNLearningAlgorithms
Returns the parameter learning algorithm for a CTBN.
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNBayesianEstimation
 
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNMaximumLikelihoodEstimation
 
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNBayesianEstimation
 
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNMaximumLikelihoodEstimation
 
getParametersAlgorithm() - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.ParameterLearningAlgorithm
Returns the parameters that are used by the algorithm.
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
 
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
 
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.BNHybridStructureLearningAlgorithm
 
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
 
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
 
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
 
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbing
 
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
 
getParametersAlgorithm() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.HillClimbingImplementation
Returns the parameters that are used by the hill climbing implementation.
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.RandomRestartHillClimbing
 
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.BNTabuSearch
 
getParametersAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.CTBNTabuSearchIndividual
 
getParametersAlgorithm() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithm
Returns the parameters that are used by the algorithm.
getParents() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
getParents() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Returns the parents of the node.
getPathsExperiments() - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
Retrieves the array of dataset paths for the experiments.
getPenalisationFunction() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.AbstractLikelihood
Returns the name of the penalisation function.
getPossibleStatesVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Returns the possible states of the specified variable.
getPredictedClasses() - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
Returns the prediction.
getPredictionTime() - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
Returns the prediction time.
getProbabilities() - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
Returns the probabilities of every possible class configuration.
getProbabilityPrediction() - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
Returns the probability of the prediction.
getQx() - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
Return matrix with the intensities of the variables leaving a certain state while their parents take a certain instantiation.
getQx(int, int) - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
Returns the intensity of the variable leaving a certain state given the state of its parents
getRandomElements(List<Integer>, int) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Get k random elements from an {\@code Integer} list.
getResults() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftAdaptiveMethod
Returns a String describing the results of the last concept drift detection.
getResults() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftGloballyAdaptiveMethod
 
getResults() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftLocallyAdaptiveMethod
 
getScore() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
Returns the score of the structure found.
getSequences() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Returns the sequences of the dataset.
getState() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
Gets the state of the node.
getStates() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
Returns a list of the states that the node can take.
getStates(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Gets all the possible states of a specific variable.
getStatesClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Gets the states of the class variables for each of the sequences.
getStatesVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Gets the possible states of all variables.
getStructureConstraints() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Returns the constraints that the PGM needs to meet.
getStructureConstraintsBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns the structure constraints for the BN.
getStructureConstraintsBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.DAG_maxK_MultiCTBNC
 
getStructureConstraintsBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_digraph_MultiCTBNC
 
getStructureConstraintsBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC
 
getStructureConstraintsBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.MultiCTNBC
 
getStructureConstraintsCTBN() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns the structure constraints for the CTBN.
getStructureConstraintsCTBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.DAG_maxK_MultiCTBNC
 
getStructureConstraintsCTBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC
 
getStructureConstraintsCTBN() - Method in class es.upm.fi.cig.multictbnc.models.submodels.MultiCTNBC
 
getStructureLearningAlg() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Returns the algorithm used to learn the structure of the PGM.
getStructureLearningAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.BNLearningAlgorithms
Returns the structure learning algorithm for a BN.
getStructureLearningAlgorithm() - Method in class es.upm.fi.cig.multictbnc.learning.CTBNLearningAlgorithms
Returns the structure learning algorithm for a CTBN.
getSubsets(List<type>, int, type) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Retrieves the possible subsets of a certain size from a given set of elements without including a certain element.
getSufficientStatistics() - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
Gets the sufficient statistics of a CIM node.
getSufficientStatistics() - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
Returns sufficient statistics of the node.
getSufficientStatisticsNode(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNBayesianEstimation
 
getSufficientStatisticsNode(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNMaximumLikelihoodEstimation
 
getSufficientStatisticsNode(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
Returns the sufficient statistics of a DiscreteNode for a given Dataset.
getSufficientStatisticsNode(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNBayesianEstimation
 
getSufficientStatisticsNode(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNMaximumLikelihoodEstimation
 
getSufficientStatisticsNode(DiscreteStateNode, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
Returns the sufficient statistics of a DiscreteNode for a given Dataset.
getTimeValue(int) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the value of the time variable in a given observation.
getTimeValues() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the values of the time variable in the sequence.
getTopologicalOrdering() - Method in class es.upm.fi.cig.multictbnc.models.BN
Obtains the topological ordering of the nodes with the Kahn's algorithm.
getTraining() - Method in class es.upm.fi.cig.multictbnc.performance.HoldOutMethod
Returns the training dataset.
getTx() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
Returns the sufficient statistic with the time that the variable stays in every state, while its parents take different values.
getTxHyperparameter() - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
Returns the value of the hyperparameter with the 'imaginary' time that was spent in a certain state before seeing the data.
getType() - Method in class es.upm.fi.cig.multictbnc.models.BN
 
getType() - Method in class es.upm.fi.cig.multictbnc.models.CTBN
 
getType() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
 
getType() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Provides the type of PGM.
getType() - Method in class es.upm.fi.cig.multictbnc.models.submodels.DAG_maxK_MultiCTBNC
 
getType() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_digraph_MultiCTBNC
 
getType() - Method in class es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC
 
getType() - Method in class es.upm.fi.cig.multictbnc.models.submodels.MultiCTNBC
 
getTypeNodeClassVariable() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
NodeFactory Returns the type of the class variable nodes.
getTypeNodeFeature() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Returns the type of the feature nodes.
getUpdatingTime() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftAdaptiveMethod
Returns the time taken for the last update of the model.
getUpdatingTime() - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftLocallyAdaptiveMethod
 
getValidationMethod(String, DatasetReader, DatasetReader, double, int, boolean, boolean, Long) - Static method in class es.upm.fi.cig.multictbnc.performance.ValidationMethodFactory
Builds the specified validation method.
getValueClassVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the values of the specified class variable.
getValueFeatureVariable(int, String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the value of a certain feature variable for a given observation.
getValues() - Method in class es.upm.fi.cig.multictbnc.data.representation.State
Returns all the values in the State.
getValuesFeatureVariables(int) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the values of all feature variables for a given observation.
getValueVariable(int, String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Returns the value of a certain variable for a given observation.
getValueVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.State
Returns the value for a specific variable.
getVariablesValues() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Retrieves the array of values for all variables (excluding the time variable) for each observation in the sequence.
globalAccuracy(Prediction[], Dataset) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
Computes the global accuracy, which is the ratio between the number of instances that were correctly classified for all the class variables and the total number of instances.
globalBrierScore(Prediction[], Dataset) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
The Brier score measures the performance of probabilistic predictions.

H

hasChildren() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
hasChildren() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Specifies if the node has children.
hasClassVariableAsParent() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
hasClassVariableAsParent() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Specifies if the node has a class variable as parent.
hasClassVariableAsSpouse() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
hasClassVariableAsSpouse() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Specifies if the node has a class variable as spouse.
hashCode() - Method in class es.upm.fi.cig.multictbnc.data.representation.State
 
hashCode() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
hasParents() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
hasParents() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Specifies if the node has parents.
HillClimbing - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing
Implements common attributes and methods for hill climbing algorithms.
HillClimbing() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
 
HillClimbingImplementation - Interface in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation
Defines an interface for different implementations of the hill climbing algorithm.
HillClimbingSolution - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing
Class used to contain the solution given by the hill climbing algorithms.
HillClimbingSolution() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
 
HITONPC - Class in es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC
Implementation of the HITON-PC algorithm.
HITONPC(double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.HITONPC
Constructor that initialises the HITON-PC algorithm by proving the significance level used.
HoldOutMethod - Class in es.upm.fi.cig.multictbnc.performance
Implements hold-out validation method.
HoldOutMethod(DatasetReader, double, boolean, boolean, Long) - Constructor for class es.upm.fi.cig.multictbnc.performance.HoldOutMethod
Constructs a HoldOut by receiving a DatasetReader, the size of the training set and if the data should be shuffled.

I

increaseNumEdgesTested() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
Increases the number of evaluated edges in one.
increaseNumEdgesTested() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.CTBNHillClimbingIndividual
Increases the number of evaluated edges in one.
initialiazeStatesClassVariables() - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Retrieves the states of the class variables and stores them in a Map.
initialiseModel(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
initialiseModel(Dataset) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Sets the dataset that will be used to estimate the structure and parameters of the model and creates its nodes.
initialiseService(MultiCTBNC<?, ?>, DatasetReader) - Method in class es.upm.fi.cig.multictbnc.services.TrainingService
Initialises the TrainingService receiving the model to learn and the a DatasetReader to read the training dataset.
initialiseService(MultiCTBNC<?, ?>, DatasetReader, boolean) - Method in class es.upm.fi.cig.multictbnc.services.ClassificationService
Initialises the ClassificationService by receiving the learnt MultiCTBNC model and a DatasetReader to read the dataset to classify.
initialiseService(ValidationMethod, MultiCTBNC<?, ?>) - Method in class es.upm.fi.cig.multictbnc.services.EvaluationService
Initialises the EvaluationService by receiving a ValidationMethod and a MultiCTBNC model.
initialiseStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.AbstractStructureConstraints
 
initialiseStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.BN.EmptyBN
 
initialiseStructure(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.NaiveBayes
 
initialiseStructure(PGM<? extends Node>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.constraints.StructureConstraints
The structure of the PGM is initialised.
initialiseSufficientStatistics(DiscreteStateNode) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
Initialises the structures to store the sufficient statistics of the node.
initialize() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
Initialises the controller.
isArrayEmpty(T[]) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Checks if an array is empty.
isClassVariable() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
isClassVariable() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Specifies if the node is a class variable.
isClassVariable(boolean) - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
isClassVariable(boolean) - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Defines if the node is a class variable.
isDataArriving() - Method in class es.upm.fi.cig.multictbnc.data.reader.DataStreamMultipleCSVReader
Checks if there is more data to be read.
isDataArriving() - Method in class es.upm.fi.cig.multictbnc.data.reader.FeatureStreamMultipleCSVReader
Checks whether there is more feature data arriving in the feature stream.
isDatasetOutdated() - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
 
isDatasetOutdated() - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Indicates if the dataset is out-of-date.
isDecomposable() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNBayesianScore
 
isDecomposable() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNConditionalLogLikelihood
 
isDecomposable() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNLogLikelihood
 
isDecomposable() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.optimisation.scores.ctbn.CTBNScoreFunction
Determines if the score is decomposable.
isDisconnected() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
isDisconnected() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Specifies if the node is disconnected, i.e., it has neither parents or children.
isInMarkovBlanketClassVariable() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
isInMarkovBlanketClassVariable() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Specifies if the node is in the Markov blanket of at least one class variable.
isScoreImproved(HillClimbingSolution, boolean[][][], int, double) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
Checks if a solution given by the hill climbing algorithm in a certain iteration is better than the current solution.
isScoreImproved(HillClimbingSolution, boolean[][][], int, double) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.tabusearch.BNTabuSearch
 
isStructureLegal(boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Determines if the structure is legal.
isStructureLegal(boolean[][]) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Checks if a structure is legal for the PGM.
isStructureLegal(boolean[][], NodeIndexer<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.BN.DAG
Checks if the structure (given by an adjacencyMatrix) is legal for a Bayesian network without restrictions.
isStructureLegal(boolean[][], NodeIndexer<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.BN.EmptyBN
 
isStructureLegal(boolean[][], NodeIndexer<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.Digraph
 
isStructureLegal(boolean[][], NodeIndexer<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.MaxKCTBNC
 
isStructureLegal(boolean[][], NodeIndexer<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.NaiveBayes
 
isStructureLegal(boolean[][], NodeIndexer<? extends Node>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.constraints.StructureConstraints
Determines if the structure of a PGM is legal.

K

kroneckerDelta(String[], String[]) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Kronecker delta function.

L

learn() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
learn() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Learns the structure and parameters of the model.
learn(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
learn(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
 
learn(Dataset) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Learns the structure and parameters of the model from a given dataset.
learn(Dataset, int) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
learn(Dataset, int) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Learns the parameters and parent set of a model's node from a given dataset.
learn(Dataset, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
learn(Dataset, List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Learns the parameters and parent set of some nodes of the model from a given dataset.
learn(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
 
learn(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.MarkovBlanketCTPC
 
learn(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
 
learn(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.BNHybridStructureLearningAlgorithm
 
learn(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
 
learn(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
 
learn(PGM<? extends Node>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithm
Learns the structure of a certain PGM.
learn(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
 
learn(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
 
learn(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.BNHybridStructureLearningAlgorithm
 
learn(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
 
learn(PGM<? extends Node>, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
 
learn(PGM<? extends Node>, int) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithm
Learn the local structure of a certain node of a PGM.
learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
 
learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.HITONPC
 
learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.OnlineMarkovBlanketCTPC
 
learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
 
learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.BNHybridStructureLearningAlgorithm
 
learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
 
learn(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbing
 
learn(PGM<? extends Node>, List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithm
Learns the local structure of certain nodes of a PGM.
learn(Node, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
 
learn(Node, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
 
learn(Node, Dataset) - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.ParameterLearningAlgorithm
Learns the parameters of a certain node of a PGM.
learn(List<? extends Node>, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
 
learn(List<? extends Node>, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
 
learn(List<? extends Node>, Dataset) - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.ParameterLearningAlgorithm
Learns the parameters of a certain PGM.
LearningStreamExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments
This class implements a experiment on streaming data.
LearningStreamExperiment(String...) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.LearningStreamExperiment
Constructs a LearningStreamExperiment with the given configuration parameters.
learnInitialStructure(PGM<? extends Node>, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC.CTPCHybridAlgorithm
Learns the initial structure of a given PGM.
learnParameters() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
learnParameters() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Learns the parameters of the PGM.
learnParameters(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
learnParameters(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.CTBN
 
learnParameters(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
 
learnParameters(Dataset) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Learns the parameters of the PGM using the provided dataset.
learnParameters(Dataset, int) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
learnParameters(Dataset, int) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
 
learnParameters(Dataset, int) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Learns the parameters of a certain node of the PGM using the provided dataset.
learnParameters(Integer) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
learnParameters(Integer) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Learns the parameters of the node whose index is specified.
learnParameters(List<Integer>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
learnParameters(List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Learns the parameters of the nodes whose indexes are specified.
learnParameters(List<Integer>, ParameterLearningAlgorithm) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
learnParameters(List<Integer>, ParameterLearningAlgorithm) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Learns the parameters of the nodes whose indexes are specified using a provider parameter learning algorithm.
learnParentSetNode(PGM<? extends Node>, int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
Learns the parent set of a node.
learnParentSetNode(PGM<? extends Node>, int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC.CTPCHybridAlgorithm
 
learnSkeleton(PGM<? extends Node>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC.PCHybridAlgorithm
Learns the skeleton of a given PGM.
learnSkeleton(PGM<? extends Node>, boolean[][], List<List<Integer>>) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
Finds the skeleton and separation sets of the given PGM.
listsOfNodeContainSameElements(List<typeNode>, List<typeNode>) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Checks if two given lists of Node contain the same elements independently of their orders.
listToArray(List<?>) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Transforms a list into an String array.
logLikelihoodSequence(Sequence, List<NodeTypeCTBN>, State) - Static method in class es.upm.fi.cig.multictbnc.util.ProbabilityUtil
Computes the log-likelihood of a sequence, also known as temporal likelihood (Stella and Amer 2012), given the state of the class variables.
logPriorProbabilityClassVariables(List<NodeTypeBN>, State) - Static method in class es.upm.fi.cig.multictbnc.util.ProbabilityUtil
Computes the logarithm of the prior probability of the class variables taking certain values.

M

macroAveraging(Prediction[], Dataset, Metric) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
Computes the value of a given evaluation metric for a multi-dimensional classification problem using macro-averaging (Gil-Begue et al., 2021).
main(String[]) - Static method in class es.upm.fi.cig.multictbnc.experiments.MainExperiment
Entry point of the application.
main(String[]) - Static method in class es.upm.fi.cig.multictbnc.Main
Application entry point.
main(String[]) - Static method in class es.upm.fi.cig.multictbnc.sampling.MainDataStreamSampling
Entry point of the application.
main(String[]) - Static method in class es.upm.fi.cig.multictbnc.sampling.MainFeatureStreamSampling
Entry point of the application.
main(String[]) - Static method in class es.upm.fi.cig.multictbnc.sampling.MainFeatureStreamSampling.MainFeatureStreamSamplingFX
Entry point for the JavaFX application responsible for the generation of feature streams.
main(String[]) - Static method in class es.upm.fi.cig.multictbnc.sampling.MainSampling
Application entry point.
main(Queue<String>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
The main method to execute the data stream experiments.
main(Queue<String>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.FeatureStreamExperiment
The main method to execute the feature stream experiments.
Main - Class in es.upm.fi.cig.multictbnc
JavaFX application to interact with the CTBNLab software.
Main() - Constructor for class es.upm.fi.cig.multictbnc.Main
 
MainDataStreamSampling - Class in es.upm.fi.cig.multictbnc.sampling
This class serves as the entry point for the data stream sampling application.
MainDataStreamSampling() - Constructor for class es.upm.fi.cig.multictbnc.sampling.MainDataStreamSampling
 
MainDataStreamSampling.MainDataStreamSamplingFX - Class in es.upm.fi.cig.multictbnc.sampling
This class represents the JavaFX application for data stream sampling.
MainDataStreamSamplingFX() - Constructor for class es.upm.fi.cig.multictbnc.sampling.MainDataStreamSampling.MainDataStreamSamplingFX
 
MainExperiment - Class in es.upm.fi.cig.multictbnc.experiments
Main class for running experiments.
MainExperiment() - Constructor for class es.upm.fi.cig.multictbnc.experiments.MainExperiment
 
MainFeatureStreamSampling - Class in es.upm.fi.cig.multictbnc.sampling
This class serves as the entry point for the feature stream sampling application.
MainFeatureStreamSampling() - Constructor for class es.upm.fi.cig.multictbnc.sampling.MainFeatureStreamSampling
 
MainFeatureStreamSampling.MainFeatureStreamSamplingFX - Class in es.upm.fi.cig.multictbnc.sampling
This class represents the JavaFX application for feature stream sampling.
MainFeatureStreamSamplingFX() - Constructor for class es.upm.fi.cig.multictbnc.sampling.MainFeatureStreamSampling.MainFeatureStreamSamplingFX
 
MainSampling - Class in es.upm.fi.cig.multictbnc.sampling
Class to sample datasets from Multi-CTBNCs with provided or randomly generated structures.
MainSampling() - Constructor for class es.upm.fi.cig.multictbnc.sampling.MainSampling
 
marginalLogLikelihoodSequence(double[]) - Static method in class es.upm.fi.cig.multictbnc.util.ProbabilityUtil
Computes the marginal log-likelihood of a sequence given the unnormalised log-a-posteriori probability for each class configuration.
MarkovBlanketCTPC - Class in es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC
Implementation of the MB-CTPC algorithm.
MarkovBlanketCTPC(double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.MarkovBlanketCTPC
Initialises the MB-CTPC algorithm by providing the significances to be used.
MaxKCTBNC - Class in es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC
Implements the structure constraints of a Max-k continuous-time Bayesian network classifier, i.e., a CTBNC where the number of parents of the feature nodes is bounded by a positive number (Codecasa and Stella, 2014).
MaxKCTBNC(int) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.MaxKCTBNC
Receives the maximum number of parents the nodes can have.
meanAccuracy(Prediction[], Dataset) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
Computes the mean of the accuracies for each class variable (Bielza et al., 2011).
meanAccuracy(Prediction[], Dataset, Map<String, Double>) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
Computes the mean of the accuracies for each class variable (Bielza et al., 2011).
Metric - Interface in es.upm.fi.cig.multictbnc.performance
Interface used to be able to pass evaluation metrics as parameters of other methods.
Metrics - Class in es.upm.fi.cig.multictbnc.performance
Computes different metrics for the evaluation of multi-dimensional classifications.
Metrics() - Constructor for class es.upm.fi.cig.multictbnc.performance.Metrics
 
MetricsWriter - Class in es.upm.fi.cig.multictbnc.writers.performance
Defines classes that write the results of evaluation metrics on different outputs.
MetricsWriter() - Constructor for class es.upm.fi.cig.multictbnc.writers.performance.MetricsWriter
 
microAveraging(Prediction[], Dataset, Metric) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
Computes the value of a given evaluation metric for a multi-dimensional classification problem using a micro-averaging (Gil-Begue et al., 2021).
ModelComparisonExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments
Represents an experiment for comparing different models' performance on datasets with different settings.
ModelComparisonExperiment(String...) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.ModelComparisonExperiment
Constructor for the ModelComparisonExperiment class.
modifyEventValue(String, String) - Method in class es.upm.fi.cig.multictbnc.data.representation.State
Modifies the value of a given variable.
MultiCTBNC<NodeTypeBN extends Node,NodeTypeCTBN extends Node> - Class in es.upm.fi.cig.multictbnc.models
Implements the multi-dimensional continuous-time Bayesian network classifier (Multi-CTBNC).
MultiCTBNC(BNLearningAlgorithms, CTBNLearningAlgorithms, Class<NodeTypeBN>, Class<NodeTypeCTBN>) - Constructor for class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Receives learning algorithms for Bayesian networks and continuous-time Bayesian networks to generate a Multi-CTBNC.
MultiCTBNC(BN<NodeTypeBN>, CTBN<NodeTypeCTBN>) - Constructor for class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Receives a Bayesian network and a continuous-time Bayesian network that represent the class subgraph and feature/bridge subgraph of a Multi-CTBNC, respectively.
MultiCTNBC<NodeTypeBN extends Node,NodeTypeCTBN extends Node> - Class in es.upm.fi.cig.multictbnc.models.submodels
Specifies the structure constraints of a multidimensional continuous-time naive Bayes classifier (Multi-CTBNC) where any subgraph has arcs except the bridge subgraph (fully naive multi-dimensional classifier).
MultiCTNBC(BNLearningAlgorithms, CTBNLearningAlgorithms, Class<NodeTypeBN>, Class<NodeTypeCTBN>) - Constructor for class es.upm.fi.cig.multictbnc.models.submodels.MultiCTNBC
Constructs a multidimensional continuous-time naive Bayes classifier given the learning algorithms for BNs and CTBNs.
MultipleCSVReader - Class in es.upm.fi.cig.multictbnc.data.reader
Provides the logic to read separate CSV files.
MultipleCSVReader(String) - Constructor for class es.upm.fi.cig.multictbnc.data.reader.MultipleCSVReader
Constructs a MultipleCSVReader that extracts all the CSV files from the specified folder.
MultipleCSVWriter - Class in es.upm.fi.cig.multictbnc.data.writer
Manages the writing of datasets into CSV files
MultipleCSVWriter() - Constructor for class es.upm.fi.cig.multictbnc.data.writer.MultipleCSVWriter
 

N

NaiveBayes - Class in es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC
Defines the structure of a continuous-time Naive Bayes classifier.
NaiveBayes() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.NaiveBayes
 
NeverSeenStateException - Exception in es.upm.fi.cig.multictbnc.exceptions
Thrown when a state was never seen before by the classifier.
NeverSeenStateException(String) - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.NeverSeenStateException
Constructs a NeverSeenStateException with the specified detail message.
Node - Interface in es.upm.fi.cig.multictbnc.nodes
Interface for a generic node of a PGM.
NodeFactory<NodeType extends Node> - Class in es.upm.fi.cig.multictbnc.nodes
Provides static methods for the creation of nodes.
NodeIndexer<NodeType extends Node> - Class in es.upm.fi.cig.multictbnc.nodes
Links nodes with a unique index.
NodeIndexer(List<NodeType>) - Constructor for class es.upm.fi.cig.multictbnc.nodes.NodeIndexer
Constructs a NodeIndexer.
NotImplementedException - Exception in es.upm.fi.cig.multictbnc.exceptions
Thrown when a requested task is not implemented.
NotImplementedException(String) - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.NotImplementedException
Constructs a NotImplementedException with the specified detail message.

O

OnlineFeatureSubsetSelection - Interface in es.upm.fi.cig.multictbnc.fss
This interface defines the structure for classes that implement online feature subset selection algorithms.
OnlineMarkovBlanketCTPC - Class in es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC
This class extends the MB-CTPC algorithm to an online learning context, allowing for dynamic updates to the learned model based on new data.
OnlineMarkovBlanketCTPC(double, double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.OnlineMarkovBlanketCTPC
Initialises the Online-MB-CTPC algorithm by providing the significances to be used.
onlyPositiveDouble(TextField) - Static method in class es.upm.fi.cig.multictbnc.util.ControllerUtil
Checks that the text field only contains positive decimals.
onlyPositiveInteger(TextField) - Static method in class es.upm.fi.cig.multictbnc.util.ControllerUtil
Checks that the text field only contains positive integers.
onlyZeroOrGreaterInteger(TextField) - Static method in class es.upm.fi.cig.multictbnc.util.ControllerUtil
Checks that the text field only contains integers greater than zero.
orientRemainingUndirectedEdges(boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
Orient the remaining undirected edges of the Bayesian network.

P

PageHinkleyTest - Class in es.upm.fi.cig.multictbnc.conceptdriftdetection
Implements the Page Hinkley Test for concept drift detection.
PageHinkleyTest(double, double, boolean, Integer) - Constructor for class es.upm.fi.cig.multictbnc.conceptdriftdetection.PageHinkleyTest
Initializes the Page Hinkley Test with the specified parameters.
ParameterLearningAlgorithm - Interface in es.upm.fi.cig.multictbnc.learning.parameters
Interface for parameter learning algorithms.
PC - Class in es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC
Implementation of the PC algorithm discrete-state Bayesian networks.
PC(double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.PC
Constructor that initialises the PC algorithm by proving the significance level used.
PCHybridAlgorithm - Class in es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC
Implements the restriction phase (PC algorithm) of the hybrid structure learning algorithm.
PCHybridAlgorithm(double) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC.PCHybridAlgorithm
Initialises the algorithm by proving a significance level.
penalisationFunctionMap - Variable in class es.upm.fi.cig.multictbnc.conceptdriftdetection.AverageLocalLogLikelihood
A map that associates penalisation function names with their corresponding mathematical functions.
PGM<NodeType extends Node> - Interface in es.upm.fi.cig.multictbnc.models
Defines the methods of a probabilistic graphical model (PGM)
precision(Map<String, Double>) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
Computes the precision evaluation metric from a Map containing a confusion matrix.
predict(Dataset, boolean) - Method in interface es.upm.fi.cig.multictbnc.classification.Classifier
Predicts the values of the class variables for each instance of a dataset.
predict(Dataset, boolean) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Performs classification over the sequences of a dataset according to the maximum a posteriori probability, i.e., the classes that obtain the highest posterior probability given each sequence are predicted.
Prediction - Class in es.upm.fi.cig.multictbnc.classification
Contains a multidimensional prediction and its probability.
Prediction() - Constructor for class es.upm.fi.cig.multictbnc.classification.Prediction
 
ProbabilityUtil - Class in es.upm.fi.cig.multictbnc.util
Utility class with methods related to the estimation of probabilities.

R

RandomRestartHillClimbing - Class in es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing
Implements random-restart hill climbing.
RandomRestartHillClimbing(HillClimbingImplementation, int) - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.RandomRestartHillClimbing
Constructs a RandomRestartHillClimbing by receiving the implementation of the hill climbing algorithm (for a Bayesian network, continuous-time Bayesian network...) and the number of restarts.
readCompleteDataset() - Method in class es.upm.fi.cig.multictbnc.data.reader.FeatureStreamMultipleCSVReader
Reads the complete feature stream to generate a static dataset.
readCSV(String, List<String>) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
Reads a CSV file.
readDataset() - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Returns a dataset.
readDataset() - Method in class es.upm.fi.cig.multictbnc.data.reader.FeatureStreamMultipleCSVReader
Reads a new feature variable from the feature stream and adds it to the current dataset.
readDataset() - Method in class es.upm.fi.cig.multictbnc.data.reader.MultipleCSVReader
 
readDataset() - Method in class es.upm.fi.cig.multictbnc.data.reader.SingleCSVReader
 
readDataset(int) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
 
readDataset(int) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Creates a dataset using only the specified number of files.
readDataset(int) - Method in class es.upm.fi.cig.multictbnc.data.reader.DataStreamMultipleCSVReader
Reads a specified number of CSV files from the dataset folder and processes them into a dataset.
readDataset(int) - Method in class es.upm.fi.cig.multictbnc.data.reader.MultipleCSVReader
 
recall(Map<String, Double>) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
Computes the recall evaluation metric from a Map containing a confusion matrix.
redundancyAnalysis(CIMNode, CPTNode, CIMNode) - Method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
Determines if a feature node is redundant with respect to the class node, given another feature node.
redundancyAnalysis(CIMNode, CPTNode, List<CIMNode>) - Method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
Determines if a feature node is redundant with respect to a class node, given a set of other feature nodes.
redundancyAnalysis(CIMNode, CPTNode, List<CIMNode>, int) - Method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
Determines if a feature node is redundant with respect to a class node, given sets of features nodes with a determine maximum size.
redundancyAnalysis(List<CIMNode>, CPTNode) - Method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
Returns a subset of feature nodes that are non-redundant given the class node.
redundancyAnalysis(List<CIMNode>, CPTNode, CIMNode) - Method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
Returns a subset of feature nodes that are non-redundant given a conditioned feature node.
removeAllEdges() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
removeAllEdges() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Remove all edges between the nodes of the PGM.
removeAllEdges() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
removeAllEdges() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Removes the parents and children of the node.
removeAllNodes() - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
removeAllNodes() - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Removes all the nodes from the PGM.
removeChild(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
removeChild(Node) - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Removes a certain child of the node.
removeChildren() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
removeChildren() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Removes the children of the node.
removeColumnArray(String[][], int) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Remove a column from an array.
removeFeatureVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Remove the specified feature variable from the dataset.
removeFeatureVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Removes a feature from the sequence.
removeFeatureVariables(List<String>) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Remove the specified feature variables from the dataset.
removeParent(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
removeParent(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
 
removeParent(Node) - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Removes a certain parent of the node.
removeParents() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
removeParents() - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Removes the parents of the node.
removeZeroVarianceVariables(boolean) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
 
removeZeroVarianceVariables(boolean) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Defines if the feature variables with no variance should be removed.
resetNumEdgesTested() - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.implementation.BNHillClimbing
Sets to zero the number of evaluated edges.
retrieveParametersAndSuffStatistics(PGM<? extends Node>, int, Map<String, List<Object>>, List<Integer>, Integer...) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
Retrieves the parameter and sufficient statistics of a node.
retrieveSubfolders(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Returns the names of the subfolders in a certain folder.

S

sample(double) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Samples a sequence given its duration.
sample(double, double, double) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Samples a sequence given its duration with added noise.
sampleNextState(double) - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
Samples the next state of the node given the current one and that of its parents.
sampleState(double) - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
Samples the state of the node given evidence using forward sampling.
sampleTimeState(double) - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
Samples the time that the node stays in its current state given the state of its parents.
saveGraph(String, String, List<Integer>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
saveGraph(String, String, List<Integer>) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Saves the PGM graph to a file.
selectCrossValidation() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
Cross-validation method was selected.
selectHoldOutValidation() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
Hold-out-validation method was selected.
selectTestDataset() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
Test dataset method was selected.
Sequence - Class in es.upm.fi.cig.multictbnc.data.representation
Represents a sequence of multivariate data, i.e., a set of data points with multiple variables where the order is relevant.
Sequence(State, List<State>, String, List<Double>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Sequence
Constructs a Sequence.
Sequence(String, List<String>, List<String>, double[], String[][], String[], Map<String, Integer>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Sequence
Constructs a Sequence.
Sequence(List<String>, String, List<String>, List<String[]>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Sequence
Constructs a Sequence.
Sequence(List<String>, String, List<String>, List<String>, List<String[]>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.Sequence
Constructs a Sequence.
setAdjacencyMatrix(boolean[][]) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
Sets the adjacency matrix of the structure.
setArcModified(int, int, int) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
Define the last arc that was modified.
setAreResultsSaved(boolean) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
Sets the flag indicating whether the results of the experiment should be saved.
setBnLearningAlgs(BNLearningAlgorithms) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Sets the learning algorithms used to define the class subgraph (BN).
setChild(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
setChild(Node) - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Defines a provided node as a child of this one.
setCPT(double[][]) - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
Establishes the CPT of the node.
setCtbnLearningAlgs(CTBNLearningAlgorithms) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Sets the learning algorithms used to define the bridge and feature subgraphs (CTBN).
setCurrentFeatureVariables(List<String>) - Method in class es.upm.fi.cig.multictbnc.fss.ConInd
Sets the current feature variables for the algorithm.
setCurrentFeatureVariables(List<String>) - Method in interface es.upm.fi.cig.multictbnc.fss.OnlineFeatureSubsetSelection
Sets the current set of feature variables.
setDataset(Dataset) - Method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
Sets the dataset to be used in the feature subset selection.
setDataset(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Set the dataset used to learn the PGM.
setDatasetAsOutdated(boolean) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
 
setDatasetAsOutdated(boolean) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Defines a previously read dataset as out-of-date, so it should be reloaded.
setFilePath(String) - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
Sets the path of the file from which the sequence was extracted.
setFolderDataset() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
Opens a dialog to select the folder where the dataset for training and evaluation is located.
setFolderDatasetClassification() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
Opens a dialog to select the folder where the dataset on which classification is performed is located.
setFolderTestDataset() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
Opens a dialog to select the folder where the dataset for testing is located.
setIgnoredClassVariables(List<String>) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Sets the class variables to ignored.
setInitialStructure(String) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Establishes the approach that will be used to define the initial structure of the Multi-CTBNC.
setNameVariables(List<String>) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Set the name of the variables in the PGM.
setParameterLearningAlgorithm(ParameterLearningAlgorithm) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Establishes the algorithm that will be used to learn the parameters of the PGM.
setParameters(double[][], double[][][]) - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
Sets the parameters of a node.
setParametersExperiment(Queue<String>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.DataStreamExperiment
Sets up the parameters for a data stream experiment using a queue of arguments.
setParametersExperiment(Queue<String>) - Method in class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.FeatureStreamExperiment
Sets up the parameters for a feature stream experiment using a queue of arguments.
setParametersModel(MultiCTBNC<CPTNode, CIMNode>) - Static method in class es.upm.fi.cig.multictbnc.sampling.MainFeatureStreamSampling.MainFeatureStreamSamplingFX
Sets the parameters of the given Multi-CTBNC.
setParent(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
setParent(Node) - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
 
setParent(Node) - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Defines a provided node as a parent of this one.
setPredictedClasses(State) - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
Sets the predicted classes.
setPredictionTime(double) - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
Sets the prediction time.
setProbabilities(Map<State, Double>) - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
Sets the probabilities of every possible class configuration.
setProbability(State, double) - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
Sets the probability of a class configuration.
setProbabilityPrediction(double) - Method in class es.upm.fi.cig.multictbnc.classification.Prediction
Sets the probability of the prediction.
setScore(double) - Method in class es.upm.fi.cig.multictbnc.learning.structure.optimisation.hillclimbing.HillClimbingSolution
Sets the score of the structure found.
setStage(Stage) - Method in class es.upm.fi.cig.multictbnc.gui.Controller
Establishes the stage used by the application to show dialogs.
setState(int) - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
Sets the state index of the node.
setState(String) - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
Sets the state of the node and returns its id.
setStateNodeAndParents(DiscreteStateNode, State) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Sets the state of a given node and its parents from a State object.
setStateParents(int) - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
Sets the states of the parents of the node given the index related to their state.
setStatesVariables(Map<String, List<String>>) - Method in class es.upm.fi.cig.multictbnc.data.representation.Dataset
Sets states of all variables.
setStructure(boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
setStructure(boolean[][]) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Modifies the structure of the PGM by changing the parents of the nodes.
setStructure(int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
setStructure(int, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.CTBN
Modifies the structure of the continuous-time Bayesian network by changing the parent set of a specified node and updates its parameters.
setStructure(int, boolean[][]) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Updates the structure of the model only for the specified node.
setStructure(List<Integer>, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
setStructure(List<Integer>, boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.CTBN
Modifies the structure of the continuous-time Bayesian network by changing the parent set of some specified nodes and updates their parameters.
setStructure(List<Integer>, boolean[][]) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Updates the structure of the model only for the specified node.
setStructureConstraints(StructureConstraints) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Establishes the constraints that the PGM needs to meet.
setStructureLearningAlgorithm(StructureLearningAlgorithm) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
Establishes the algorithm that will be used to learn the structure of the PGM.
setStructureModifiedNodes(boolean[][]) - Method in class es.upm.fi.cig.multictbnc.models.AbstractPGM
 
setStructureModifiedNodes(boolean[][]) - Method in interface es.upm.fi.cig.multictbnc.models.PGM
Modifies the structure of the PGM by changing the parents and CPDs of those nodes which have different parents between the current adjacency matrix and the new one.
setSufficientStatistics(SufficientStatistics) - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
 
setSufficientStatistics(SufficientStatistics) - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
Establishes the sufficient statistics of a CPT node.
setSufficientStatistics(SufficientStatistics) - Method in interface es.upm.fi.cig.multictbnc.nodes.Node
Establishes the sufficient statistics of the node.
setSufficientStatistics(Node, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
 
setSufficientStatistics(Node, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
 
setSufficientStatistics(Node, Dataset) - Method in interface es.upm.fi.cig.multictbnc.learning.parameters.ParameterLearningAlgorithm
Obtains the sufficient statistics of a BN node.
setSufficientStatistics(List<? extends Node>, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
Obtains for each node the number of times it takes a certain state while its parents take a certain instantiation.
setSufficientStatistics(List<? extends Node>, Dataset) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNParameterLearningAlgorithm
Obtains the sufficient statistics of each node of a CTBN.
setTimeAndClassVariables(String, List<String>) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
 
setTimeAndClassVariables(String, List<String>) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Receives the names of the time and class variables of a dataset.
setTimeAndFeatureVariables(String, List<String>) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
 
setTimeAndFeatureVariables(String, List<String>) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Receives the names of the time and feature variables of a dataset.
setTimeVariable(String) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
 
setTimeVariable(String) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Receives the name of the time variable of a dataset.
setUpLineChart(String, double) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftAdaptiveMethod
Sets up line charts for visualizing concept drift detection results if the charts are enabled.
setUpLineChart(String, double) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftGloballyAdaptiveMethod
Sets up line charts for visualizing concept drift detection results if the charts are enabled.
setUpLineChart(String, double) - Method in class es.upm.fi.cig.multictbnc.conceptdriftdetection.ConceptDriftLocallyAdaptiveMethod
Sets up line charts for visualizing the evolution of the average local log-likelihood and Page Hinkley values if the charts are enabled.
setVariables(String, List<String>, List<String>) - Method in class es.upm.fi.cig.multictbnc.data.reader.AbstractCSVReader
 
setVariables(String, List<String>, List<String>) - Method in interface es.upm.fi.cig.multictbnc.data.reader.DatasetReader
Receives the names of the time variable, feature variables and class variables of a dataset.
setWriter(MetricsWriter) - Method in class es.upm.fi.cig.multictbnc.performance.ValidationMethod
Defines the metrics writer used to save the results of the evaluation.
showNode(Node, boolean) - Static method in class es.upm.fi.cig.multictbnc.util.ControllerUtil
Changes the visibility of a node.
showPredictions(Prediction[], Dataset) - Static method in class es.upm.fi.cig.multictbnc.performance.Metrics
Displays the predictions along with the actual values.
shuffle(List<T>, Long) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Shuffles the elements of a list.
SingleCSVReader - Class in es.upm.fi.cig.multictbnc.data.reader
Reads time series data contained in a single CSV.
SingleCSVReader(String, int) - Constructor for class es.upm.fi.cig.multictbnc.data.reader.SingleCSVReader
Constructs a SingleCSVReader that extracts a CSV file from the specified folder.
SlidingWindow<T> - Class in es.upm.fi.cig.multictbnc.data.representation
Represents a sliding window data structure.
SlidingWindow(int) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.SlidingWindow
Constructs a sliding window with the specified size.
start(Stage) - Method in class es.upm.fi.cig.multictbnc.Main
 
start(Stage) - Method in class es.upm.fi.cig.multictbnc.sampling.MainDataStreamSampling.MainDataStreamSamplingFX
 
start(Stage) - Method in class es.upm.fi.cig.multictbnc.sampling.MainFeatureStreamSampling.MainFeatureStreamSamplingFX
 
State - Class in es.upm.fi.cig.multictbnc.data.representation
Represents the state of certain nodes/variables (events) by keeping their names and values.
State() - Constructor for class es.upm.fi.cig.multictbnc.data.representation.State
Default constructor.
State(State) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.State
Constructor to clone states;
State(String, String) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.State
Creates a State instance with one event.
State(Map<String, String>) - Constructor for class es.upm.fi.cig.multictbnc.data.representation.State
Creates a State instance with some events.
StatisticalBasedFeatureSelection - Class in es.upm.fi.cig.multictbnc.fss
Provides the basis for statistical-based feature subset selection algorithms.
StatisticalBasedFeatureSelection(List<String>, ParameterLearningAlgorithm, int, double, double) - Constructor for class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
Initializes the necessary structures for feature subset selection including parameter learning algorithms, significance levels, and a cache for redundancy checks.
stop() - Method in class es.upm.fi.cig.multictbnc.Main
 
stringToList(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Extract a list of Strings from a String representation of a list with the format "element1,element2,element3" (commas are the delimiters).
stringToMap(String) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Extract a map from a String with the format "String:Double,String:Double", where the Strings are the keys and the doubles the values.
StructureConstraints - Interface in es.upm.fi.cig.multictbnc.learning.structure.constraints
Interface used to define classes that specify structure constraints for PGMs.
StructureLearningAlgorithm - Interface in es.upm.fi.cig.multictbnc.learning.structure
Interface used to define algorithms for learning the structure of PGMs.
StructureLearningAlgorithmFactory - Class in es.upm.fi.cig.multictbnc.learning.structure
Builds the specified structure learning algorithms for Bayesian networks and continuous-time Bayesian networks.
StructureLearningAlgorithmFactory() - Constructor for class es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithmFactory
 
StructureLearningAlgorithmsComparisonExperiment - Class in es.upm.fi.cig.multictbnc.experiments.implementationsexperiments
Class designed to perform a comparative experiment of structure learning algorithms for Multi-CTBNCs.
StructureLearningAlgorithmsComparisonExperiment(String[]) - Constructor for class es.upm.fi.cig.multictbnc.experiments.implementationsexperiments.StructureLearningAlgorithmsComparisonExperiment
Constructor that initializes the experiment with the provided configuration.
SubsetSelectedFeatures - Class in es.upm.fi.cig.multictbnc.fss
Class that encapsulates the names of the feature variables selected by a FSS algorithm and the execution time of this algorithm to provide that solution.
SubsetSelectedFeatures(List<String>, double) - Constructor for class es.upm.fi.cig.multictbnc.fss.SubsetSelectedFeatures
Constructs an instance of SubsetSelectedFeatureVariables.
succeeded() - Method in class es.upm.fi.cig.multictbnc.tasks.ClassificationTask
 
succeeded() - Method in class es.upm.fi.cig.multictbnc.tasks.EvaluationTask
 
succeeded() - Method in class es.upm.fi.cig.multictbnc.tasks.TrainingTask
 
SufficientStatistics - Interface in es.upm.fi.cig.multictbnc.learning.parameters
Interface for sufficient statistics of discrete nodes.
szudzikFunction(int, int) - Static method in class es.upm.fi.cig.multictbnc.util.Util
Given two non-negative numbers, this method returns a non-negative integer that is uniquely associated with that pair.

T

TestDatasetBinaryRelevanceMethod - Class in es.upm.fi.cig.multictbnc.performance
Implements a validation method for evaluating CTBNCs using a test.
TestDatasetBinaryRelevanceMethod(DatasetReader, DatasetReader, boolean) - Constructor for class es.upm.fi.cig.multictbnc.performance.TestDatasetBinaryRelevanceMethod
Constructor that receives the dataset readers and configuration.
TestDatasetMethod - Class in es.upm.fi.cig.multictbnc.performance
This class allows specifying different training and test datasets.
TestDatasetMethod(DatasetReader, boolean) - Constructor for class es.upm.fi.cig.multictbnc.performance.TestDatasetMethod
Constructor that receives a DatasetReader for the test dataset, whether the dataset should be shuffled, a seed for shuffling and whether the probabilities of each class configuration should be estimated during the testing.
TestDatasetMethod(DatasetReader, DatasetReader, boolean) - Constructor for class es.upm.fi.cig.multictbnc.performance.TestDatasetMethod
Constructor that receives two DatasetReader for the training and test datasets, whether the test dataset should be shuffled, a seed for shuffling and whether the probabilities of each class configuration should be estimated during the testing.
testNullStateToStateTransitionHypForGivenSepSet(CIMNode, CIMNode, List<String>, CTBNSufficientStatistics, CTBNSufficientStatistics) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
Evaluates null state-to-state transition hypothesis for a given node and parent node given a certain separating set.
testNullStateToStateTransitionHypothesis(CIMNode, List<String>, CTBNSufficientStatistics, CTBNSufficientStatistics) - Static method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
Evaluates the null state-to-state transition hypothesis between a feature node and the class node, given a separating set.
testNullTimeToTransitionHypForGivenSepSet(CIMNode, CIMNode, List<String>, double[][], CTBNSufficientStatistics, double[][], CTBNSufficientStatistics) - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
Evaluate null time to transition hypothesis for a given node and parent given a certain separating set.
testNullTimeToTransitionHypothesis(CIMNode, List<String>, CTBNSufficientStatistics, double[][], CTBNSufficientStatistics, double[][]) - Static method in class es.upm.fi.cig.multictbnc.fss.StatisticalBasedFeatureSelection
Evaluates the null time to transition hypothesis between a feature node and the class node, given a separating set.
TimeSeriesChart - Class in es.upm.fi.cig.multictbnc.gui
A class for creating and managing a time series chart using the JFreeChart library.
TimeSeriesChart(String, String, String, int[], String...) - Constructor for class es.upm.fi.cig.multictbnc.gui.TimeSeriesChart
Constructs a TimeSeriesChart instance.
toString() - Method in class es.upm.fi.cig.multictbnc.data.representation.Sequence
 
toString() - Method in class es.upm.fi.cig.multictbnc.data.representation.State
 
toString() - Method in class es.upm.fi.cig.multictbnc.fss.SubsetSelectedFeatures
 
toString() - Method in class es.upm.fi.cig.multictbnc.models.BN
 
toString() - Method in class es.upm.fi.cig.multictbnc.models.CTBN
 
toString() - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
 
toString() - Method in class es.upm.fi.cig.multictbnc.nodes.AbstractNode
 
toString() - Method in class es.upm.fi.cig.multictbnc.nodes.CIMNode
 
toString() - Method in class es.upm.fi.cig.multictbnc.nodes.CPTNode
 
toString() - Method in class es.upm.fi.cig.multictbnc.nodes.DiscreteStateNode
 
TrainingService - Class in es.upm.fi.cig.multictbnc.services
Service that creates and manages a TrainingTask.
TrainingService() - Constructor for class es.upm.fi.cig.multictbnc.services.TrainingService
 
TrainingTask - Class in es.upm.fi.cig.multictbnc.tasks
Task that allows executing the training of a model in a background thread.
TrainingTask(MultiCTBNC<?, ?>, DatasetReader) - Constructor for class es.upm.fi.cig.multictbnc.tasks.TrainingTask
Constructs a TrainingTask that receives an MultiCTBNC model and a datasetReader.
trainModel() - Method in class es.upm.fi.cig.multictbnc.gui.Controller
Trains the selected model.
TxtClassificationWriter - Class in es.upm.fi.cig.multictbnc.writers.classification
Class to write the predictions made on a dataset in a TXT file.
TxtClassificationWriter() - Constructor for class es.upm.fi.cig.multictbnc.writers.classification.TxtClassificationWriter
 

U

uniqueStructure() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.AbstractStructureConstraints
 
uniqueStructure() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.BN.EmptyBN
 
uniqueStructure() - Method in class es.upm.fi.cig.multictbnc.learning.structure.constraints.CTBNC.NaiveBayes
 
uniqueStructure() - Method in interface es.upm.fi.cig.multictbnc.learning.structure.constraints.StructureConstraints
Determines if there is only one possible structure.
UnreadDatasetException - Exception in es.upm.fi.cig.multictbnc.exceptions
Thrown when the provided dataset could not be read.
UnreadDatasetException(String) - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.UnreadDatasetException
Constructs a UnreadDatasetException with the specified detail message.
update(double) - Method in class es.upm.fi.cig.multictbnc.gui.TimeSeriesChart
Updates the chart with a new value for the Y axis.
update(double[]) - Method in class es.upm.fi.cig.multictbnc.gui.TimeSeriesChart
Updates the chart providing the Y axis value of several time series.
update(double, double) - Method in class es.upm.fi.cig.multictbnc.gui.XYLineChart
Updates the chart with a new value for the X and Y axis.
update(double, double[]) - Method in class es.upm.fi.cig.multictbnc.gui.XYLineChart
Updates the chart providing the X and Y axis values of several series.
update(List<Node>, Dataset) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Learns the sets of parents and children of some nodes from a provided dataset and update the model with them.
updateBridgeAndFeatureSubgraph(Dataset) - Method in class es.upm.fi.cig.multictbnc.models.MultiCTBNC
Updates the bridge and feature subgraphs of the Multi-CTBNC model with new data from the provided dataset.
updateMx(int, int, double) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
Updates the number of occurrences where the node transitions from a certain state to any other state given an instantiation of its parents.
updateMxy(int, int, int, double) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
Updates the number of occurrences where the node transitions from a certain state to another given an instantiation of its parents.
updateSufficientStatistics(Sequence, int, int, int, int) - Method in class es.upm.fi.cig.multictbnc.learning.parameters.ctbn.CTBNSufficientStatistics
Update the values of the sufficient statistics.
UserInterfaceUtil - Class in es.upm.fi.cig.multictbnc.util
Utility class with methods related to the user interface.
Util - Class in es.upm.fi.cig.multictbnc.util
Utility class.

V

ValidationMethod - Class in es.upm.fi.cig.multictbnc.performance
Abstract class defining common methods for validation algorithms.
ValidationMethod() - Constructor for class es.upm.fi.cig.multictbnc.performance.ValidationMethod
 
ValidationMethodFactory - Class in es.upm.fi.cig.multictbnc.performance
Builds validation methods.
ValidationMethodFactory() - Constructor for class es.upm.fi.cig.multictbnc.performance.ValidationMethodFactory
 
VariableNotFoundException - Exception in es.upm.fi.cig.multictbnc.exceptions
Thrown when an expected variable is not found in a provided dataset.
VariableNotFoundException() - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.VariableNotFoundException
Constructs a VariableNotFoundException with no detail message.
VariableNotFoundException(String) - Constructor for exception es.upm.fi.cig.multictbnc.exceptions.VariableNotFoundException
Constructs a VariableNotFoundException with the specified detail message.

W

write(Dataset, String) - Static method in class es.upm.fi.cig.multictbnc.data.writer.MultipleCSVWriter
Writes the sequences of the provided dataset to multiple CSV files in the specified directory.
write(Dataset, List<String>, String) - Static method in class es.upm.fi.cig.multictbnc.data.writer.MultipleCSVWriter
Writes the sequences of the provided dataset to multiple CSV files in the specified directory, including only the specified feature variables.
write(Sequence, String, String) - Static method in class es.upm.fi.cig.multictbnc.data.writer.MultipleCSVWriter
Writes a sequence to a CSV file in the specified directory.
write(Sequence, List<String>, String, String) - Static method in class es.upm.fi.cig.multictbnc.data.writer.MultipleCSVWriter
Writes a sequence to a CSV file in the specified directory and including only the specified feature variables.
write(List<Map<String, Double>>) - Method in class es.upm.fi.cig.multictbnc.writers.performance.MetricsWriter
Writes the results to an output.
write(Map<String, Double>) - Method in class es.upm.fi.cig.multictbnc.writers.performance.ConsoleExperimentsWriter
 
write(Map<String, Double>) - Method in class es.upm.fi.cig.multictbnc.writers.performance.ExcelExperimentsWriter
 
write(Map<String, Double>) - Method in class es.upm.fi.cig.multictbnc.writers.performance.MetricsWriter
Writes the given results.
writePredictions(Prediction[], Dataset, String) - Static method in class es.upm.fi.cig.multictbnc.writers.classification.TxtClassificationWriter
Writes predictions of a dataset in the specified folder.

X

XYLineChart - Class in es.upm.fi.cig.multictbnc.gui
A class for creating and managing an XY line chart using the JFreeChart library.
XYLineChart(String, String, String, int[], String...) - Constructor for class es.upm.fi.cig.multictbnc.gui.XYLineChart
Constructs an XYLineChart instance.
A B C D E F G H I K L M N O P R S T U V W X 
All Classes and Interfaces|All Packages|Serialized Form