Module es.upm.fi.cig.multictbnc
Class BNMaximumLikelihoodEstimation
java.lang.Object
es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
es.upm.fi.cig.multictbnc.learning.parameters.bn.BNMaximumLikelihoodEstimation
- All Implemented Interfaces:
ParameterLearningAlgorithm
Maximum likelihood estimation of BN parameters.
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionReturns a unique identifier for the parameter learning algorithm.Gets the name of the method to learn the parameters.Returns the parameters that are used by the algorithm.protected BNSufficientStatistics
getSufficientStatisticsNode
(DiscreteStateNode node, Dataset dataset) Returns the sufficient statistics of aDiscreteNode
for a givenDataset
.Methods inherited from class es.upm.fi.cig.multictbnc.learning.parameters.bn.BNParameterLearningAlgorithm
learn, learn, setSufficientStatistics, setSufficientStatistics
-
Constructor Details
-
BNMaximumLikelihoodEstimation
public BNMaximumLikelihoodEstimation()
-
-
Method Details
-
getIdentifier
Description copied from interface:ParameterLearningAlgorithm
Returns a unique identifier for the parameter learning algorithm.- Returns:
- unique identifier for the parameter learning algorithm
-
getNameMethod
Description copied from interface:ParameterLearningAlgorithm
Gets the name of the method to learn the parameters.- Returns:
- name of the method to learn the parameters
-
getParametersAlgorithm
Description copied from interface:ParameterLearningAlgorithm
Returns the parameters that are used by the algorithm.- Returns:
- a
Map
with the parameters used by the algorithm
-
getSufficientStatisticsNode
protected BNSufficientStatistics getSufficientStatisticsNode(DiscreteStateNode node, Dataset dataset) Description copied from class:BNParameterLearningAlgorithm
Returns the sufficient statistics of aDiscreteNode
for a givenDataset
.- Specified by:
getSufficientStatisticsNode
in classBNParameterLearningAlgorithm
- Parameters:
node
- aDiscreteNode
dataset
- dataset from which the sufficient statistics are extracted- Returns:
- sufficient statistics of the provided node
-