Module es.upm.fi.cig.multictbnc
Class StructureLearningAlgorithmFactory
java.lang.Object
es.upm.fi.cig.multictbnc.learning.structure.StructureLearningAlgorithmFactory
Builds the specified structure learning algorithms for Bayesian networks and continuous-time Bayesian networks.
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionstatic StructureLearningAlgorithm
getAlgorithmBN
(String algorithm, Map<String, String> param) Builds the specified structure learning algorithm for Bayesian networks.static StructureLearningAlgorithm
getAlgorithmCTBN
(String algorithm, Map<String, String> param) Builds the specified structure learning algorithm for continuous-time Bayesian networks.Returns the name of available optimisation methods.
-
Constructor Details
-
StructureLearningAlgorithmFactory
public StructureLearningAlgorithmFactory()
-
-
Method Details
-
getAlgorithmBN
Builds the specified structure learning algorithm for Bayesian networks. Current parameters: (1) scoreFunction: name of the score function (score-based/hybrid algorithms) (2) penalisationFunction: name of the penalisation function (score-based/hybrid algorithms) (3) numRestarts: number of restarts for the random-restart hill climbing (random-restart hill climbing) (3) tabuListSize: size of the tabu list (tabu search) (4) significancePC: significance of the PC algorithm (constraint-based/hybrid algorithms)- Parameters:
algorithm
- name of the structure learning algorithmparam
- map containing the necessary parameters for the requested algorithm- Returns:
- structure learning algorithm for Bayesian networks
-
getAlgorithmCTBN
public static StructureLearningAlgorithm getAlgorithmCTBN(String algorithm, Map<String, String> param) Builds the specified structure learning algorithm for continuous-time Bayesian networks.(1) scoreFunction: name of the score function (score-based/hybrid algorithms) (2) penalisationFunction: name of the penalisation function (score-based/hybrid algorithms) (3) numRestarts: number of restarts for the random-restart hill climbing (Random-restart hill climbing) (3) tabuListSize: size of the tabu list (Tabu search) (4) sigTimeTransitionHyp: significance of the PC algorithm (constraint-based/hybrid algorithms) (5) sigStateToStateTransitionHyp: significance of the PC algorithm (constraint-based/hybrid algorithms) (6) maxSizeSepSet: (Hybrid algorithm)
- Parameters:
algorithm
- name of the structure learning algorithmparam
- map containing the necessary parameters for the requested algorithm- Returns:
- structure learning algorithm for continuous-time Bayesian networks
-
getAvailableLearningMethods
Returns the name of available optimisation methods.- Returns:
- optimisation methods
-