Module es.upm.fi.cig.multictbnc
Class CTBNHybridStructureLearningAlgorithm
java.lang.Object
es.upm.fi.cig.multictbnc.learning.structure.hybrid.CTBNHybridStructureLearningAlgorithm
- All Implemented Interfaces:
StructureLearningAlgorithm
public class CTBNHybridStructureLearningAlgorithm
extends Object
implements StructureLearningAlgorithm
Implements the hybrid structure learning algorithm for continuous-time Bayesian networks. This class was designed to
learn the bridge and feature subgraphs of a Multi-CTBNC.
-
Constructor Summary
ConstructorsConstructorDescriptionCTBNHybridStructureLearningAlgorithm(CTBNScoreFunction scoreFunction, int maxSizeSepSet, double sigTimeTransitionHypothesis, double sigStateToStateTransitionHypothesis) Initialises the hybrid structure learning algorithm receiving significance values, a score function and the maximum size of the separating sets. -
Method Summary
Modifier and TypeMethodDescriptionReturns a unique identifier for the structure learning algorithm.Returns the parameters that are used by the algorithm.voidLearns the structure of a certain PGM.voidLearn the local structure of a certain node of a PGM.voidLearns the local structure of certain nodes of a PGM.
-
Constructor Details
-
CTBNHybridStructureLearningAlgorithm
public CTBNHybridStructureLearningAlgorithm(CTBNScoreFunction scoreFunction, int maxSizeSepSet, double sigTimeTransitionHypothesis, double sigStateToStateTransitionHypothesis) Initialises the hybrid structure learning algorithm receiving significance values, a score function and the maximum size of the separating sets.- Parameters:
scoreFunction- score function for the maximisation phasemaxSizeSepSet- maximum separating size for the restriction phasesigTimeTransitionHypothesis- significance level used for the null time to transition hypothesis in the restriction phasesigStateToStateTransitionHypothesis- significance level used for the null state-to-state transition hypothesis in the restriction phase
-
-
Method Details
-
getIdentifier
Description copied from interface:StructureLearningAlgorithmReturns a unique identifier for the structure learning algorithm.- Specified by:
getIdentifierin interfaceStructureLearningAlgorithm- Returns:
- unique identifier for the structure learning algorithm
-
getParametersAlgorithm
Description copied from interface:StructureLearningAlgorithmReturns the parameters that are used by the algorithm.- Specified by:
getParametersAlgorithmin interfaceStructureLearningAlgorithm- Returns:
- a
Mapwith the parameters used by the algorithm
-
learn
Description copied from interface:StructureLearningAlgorithmLearns the local structure of certain nodes of a PGM.- Specified by:
learnin interfaceStructureLearningAlgorithm- Parameters:
pgm- a probabilistic graphical modelidxNodes- node indexes
-
learn
Description copied from interface:StructureLearningAlgorithmLearns the structure of a certain PGM.- Specified by:
learnin interfaceStructureLearningAlgorithm- Parameters:
pgm- a probabilistic graphical model- Throws:
ErroneousValueException- if a parameter provided is invalid for the requested task
-
learn
Description copied from interface:StructureLearningAlgorithmLearn the local structure of a certain node of a PGM.- Specified by:
learnin interfaceStructureLearningAlgorithm- Parameters:
pgm- a probabilistic graphical modelidxNode- node index
-