Module es.upm.fi.cig.multictbnc
Class CTPCHybridAlgorithm
java.lang.Object
es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC.CTPCHybridAlgorithm
- All Implemented Interfaces:
StructureLearningAlgorithm
Implements the restriction phase (CTPC algorithm) of the hybrid structure learning algorithm.
-
Constructor Summary
ConstructorDescriptionCTPCHybridAlgorithm
(int maxSizeSepSet, double sigTimeTransitionHypothesis, double sigStateToStateTransitionHypothesis) Initialises the algorithm by proving a significance level. -
Method Summary
Modifier and TypeMethodDescriptionboolean[][]
learnInitialStructure
(PGM<? extends Node> pgm, List<Integer> idxFeatureVariables) Learns the initial structure of a given PGM.protected void
learnParentSetNode
(PGM<? extends Node> pgm, int idxNode, boolean[][] adjacencyMatrix) Learns the parent set of a node.Methods inherited from class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
addSepSetAndNodeAsParents, addSepSetAsParents, buildCompleteStructure, getIdentifier, getIdxFeatureVariables, getIdxParentsNode, getParametersAlgorithm, learn, learn, learn, retrieveParametersAndSuffStatistics, testNullStateToStateTransitionHypForGivenSepSet, testNullTimeToTransitionHypForGivenSepSet
-
Constructor Details
-
CTPCHybridAlgorithm
public CTPCHybridAlgorithm(int maxSizeSepSet, double sigTimeTransitionHypothesis, double sigStateToStateTransitionHypothesis) Initialises the algorithm by proving a significance level.- Parameters:
maxSizeSepSet
- maximum separating set sizesigTimeTransitionHypothesis
- significance levelsigStateToStateTransitionHypothesis
- significance level
-
-
Method Details
-
learnInitialStructure
public boolean[][] learnInitialStructure(PGM<? extends Node> pgm, List<Integer> idxFeatureVariables) Learns the initial structure of a given PGM. Indexes of feature variables whose parent sets will be learnt need to be specified.- Parameters:
pgm
- probabilistic graphical modelidxFeatureVariables
- indexes of feature variables- Returns:
- initial adjacency matrix
-
learnParentSetNode
protected void learnParentSetNode(PGM<? extends Node> pgm, int idxNode, boolean[][] adjacencyMatrix) throws ErroneousValueException Description copied from class:CTPC
Learns the parent set of a node.- Overrides:
learnParentSetNode
in classCTPC
- Parameters:
pgm
- probabilistic graphical model that contains the nodeidxNode
- index of the node whose parent set is being learntadjacencyMatrix
- current adjacency matrix- Throws:
ErroneousValueException
- if a provided parameter is erroneous for the requested task
-