Module es.upm.fi.cig.multictbnc
Class CTPCHybridAlgorithm
java.lang.Object
es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
es.upm.fi.cig.multictbnc.learning.structure.hybrid.PC.CTPCHybridAlgorithm
- All Implemented Interfaces:
StructureLearningAlgorithm
Implements the restriction phase (CTPC algorithm) of the hybrid structure learning algorithm.
-
Constructor Summary
ConstructorsConstructorDescriptionCTPCHybridAlgorithm(int maxSizeSepSet, double sigTimeTransitionHypothesis, double sigStateToStateTransitionHypothesis) Initialises the algorithm by proving a significance level. -
Method Summary
Modifier and TypeMethodDescriptionboolean[][]learnInitialStructure(PGM<? extends Node> pgm, List<Integer> idxFeatureVariables) Learns the initial structure of a given PGM.protected voidlearnParentSetNode(PGM<? extends Node> pgm, int idxNode, boolean[][] adjacencyMatrix) Learns the parent set of a node.Methods inherited from class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
addSepSetAndNodeAsParents, addSepSetAsParents, buildCompleteStructure, getIdentifier, getIdxFeatureVariables, getIdxParentsNode, getParametersAlgorithm, learn, learn, learn, retrieveParametersAndSuffStatistics, testNullStateToStateTransitionHypForGivenSepSet, testNullTimeToTransitionHypForGivenSepSet
-
Constructor Details
-
CTPCHybridAlgorithm
public CTPCHybridAlgorithm(int maxSizeSepSet, double sigTimeTransitionHypothesis, double sigStateToStateTransitionHypothesis) Initialises the algorithm by proving a significance level.- Parameters:
maxSizeSepSet- maximum separating set sizesigTimeTransitionHypothesis- significance levelsigStateToStateTransitionHypothesis- significance level
-
-
Method Details
-
learnInitialStructure
public boolean[][] learnInitialStructure(PGM<? extends Node> pgm, List<Integer> idxFeatureVariables) Learns the initial structure of a given PGM. Indexes of feature variables whose parent sets will be learnt need to be specified.- Parameters:
pgm- probabilistic graphical modelidxFeatureVariables- indexes of feature variables- Returns:
- initial adjacency matrix
-
learnParentSetNode
protected void learnParentSetNode(PGM<? extends Node> pgm, int idxNode, boolean[][] adjacencyMatrix) throws ErroneousValueException Description copied from class:CTPCLearns the parent set of a node.- Overrides:
learnParentSetNodein classCTPC- Parameters:
pgm- probabilistic graphical model that contains the nodeidxNode- index of the node whose parent set is being learntadjacencyMatrix- current adjacency matrix- Throws:
ErroneousValueException- if a provided parameter is erroneous for the requested task
-