Module es.upm.fi.cig.multictbnc
Class MarkovBlanketCTPC
java.lang.Object
es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.MarkovBlanketCTPC
- All Implemented Interfaces:
StructureLearningAlgorithm
- Direct Known Subclasses:
OnlineMarkovBlanketCTPC
Implementation of the MB-CTPC algorithm.
-
Constructor Summary
ConstructorDescriptionMarkovBlanketCTPC
(double sigTimeTransitionHypothesis, double sigStateToStateTransitionHypothesis) Initialises the MB-CTPC algorithm by providing the significances to be used. -
Method Summary
Methods inherited from class es.upm.fi.cig.multictbnc.learning.structure.constraintlearning.PC.CTPC
addSepSetAndNodeAsParents, addSepSetAsParents, buildCompleteStructure, getIdentifier, getIdxFeatureVariables, getIdxParentsNode, getParametersAlgorithm, learn, learn, learnParentSetNode, retrieveParametersAndSuffStatistics, testNullStateToStateTransitionHypForGivenSepSet, testNullTimeToTransitionHypForGivenSepSet
-
Constructor Details
-
MarkovBlanketCTPC
public MarkovBlanketCTPC(double sigTimeTransitionHypothesis, double sigStateToStateTransitionHypothesis) Initialises the MB-CTPC algorithm by providing the significances to be used.- Parameters:
sigTimeTransitionHypothesis
- significance level used for the null time to transition hypothesissigStateToStateTransitionHypothesis
- significance level used for the null state-to-state transition hypothesis
-
-
Method Details
-
learn
Description copied from interface:StructureLearningAlgorithm
Learns the structure of a certain PGM.- Specified by:
learn
in interfaceStructureLearningAlgorithm
- Overrides:
learn
in classCTPC
- Parameters:
pgm
- a probabilistic graphical model
-