All Implemented Interfaces:
StructureLearningAlgorithm

public class OnlineMarkovBlanketCTPC extends MarkovBlanketCTPC
This class extends the MB-CTPC algorithm to an online learning context, allowing for dynamic updates to the learned model based on new data.
  • Constructor Details

    • OnlineMarkovBlanketCTPC

      public OnlineMarkovBlanketCTPC(double sigTimeTransitionHypothesis, double sigStateToStateTransitionHypothesis)
      Initialises the Online-MB-CTPC algorithm by providing the significances to be used.
      Parameters:
      sigTimeTransitionHypothesis - significance level used for the null time to transition hypothesis
      sigStateToStateTransitionHypothesis - significance level used for the null state-to-state transition hypothesis
  • Method Details

    • learn

      public void learn(PGM<? extends Node> pgm, List<Integer> idxNodesToUpdate)
      Description copied from interface: StructureLearningAlgorithm
      Learns the local structure of certain nodes of a PGM.
      Specified by:
      learn in interface StructureLearningAlgorithm
      Overrides:
      learn in class CTPC
      Parameters:
      pgm - a probabilistic graphical model
      idxNodesToUpdate - node indexes
    • getIdxFeatureVariables

      protected List<Integer> getIdxFeatureVariables(PGM<? extends Node> pgm, List<Integer> idxNodes)
      Retrieves the index nodes representing feature variables from a given list of index nodes.
      Parameters:
      pgm - the PGM containing the nodes
      idxNodes - the list of index nodes
      Returns:
      the list of index nodes representing feature variables