Module es.upm.fi.cig.multictbnc
Class Empty_maxK_MultiCTBNC<NodeTypeBN extends Node,NodeTypeCTBN extends Node>
java.lang.Object
es.upm.fi.cig.multictbnc.models.AbstractPGM<Node>
es.upm.fi.cig.multictbnc.models.MultiCTBNC<NodeTypeBN,NodeTypeCTBN>
es.upm.fi.cig.multictbnc.models.submodels.Empty_maxK_MultiCTBNC<NodeTypeBN,NodeTypeCTBN>
- Type Parameters:
NodeTypeBN
- type of the nodes of the BN (class subgraph)NodeTypeCTBN
- type of the nodes of the CTBN (feature subgraph)
- All Implemented Interfaces:
Classifier
,PGM<Node>
public class Empty_maxK_MultiCTBNC<NodeTypeBN extends Node,NodeTypeCTBN extends Node>
extends MultiCTBNC<NodeTypeBN,NodeTypeCTBN>
Implements a Multi-CTBNC with an empty class subgraph and a K-dependence continuous-time Bayesian network for the
feature subgraph, i.e., the feature nodes are limited to having K parents (apart of the class variables).
-
Constructor Summary
ConstructorDescriptionEmpty_maxK_MultiCTBNC
(BNLearningAlgorithms bnLearningAlgs, CTBNLearningAlgorithms ctbnLearningAlgs, int maxK, Class<NodeTypeBN> bnNodeClass, Class<NodeTypeCTBN> ctbnNodeClass) Constructs aEmpty_maxK_Multi-CTBNC
by receiving the learning algorithms for Bayesian networks and continuous-time Bayesian networks and the maximum number of parents of the features (apart of the class variables). -
Method Summary
Modifier and TypeMethodDescriptionReturns the hyperparameters of the model the user sets.Returns aString
that identifies the model.Returns the structure constraints for the BN.Returns the structure constraints for the CTBN.getType()
Provides the type of PGM.Methods inherited from class es.upm.fi.cig.multictbnc.models.MultiCTBNC
areParametersEstimated, getBN, getCTBN, getInitialStructure, getLearningAlgsBN, getLearningAlgsCTBN, getNameFeatureVariables, getNodes, getNodesClassVariables, getNodesCTBN, getNodesCTBNInMarkovBlanketClassVariables, getNodesFeatureVariables, getNumClassVariables, getNumFeatureVariables, getTypeNodeClassVariable, getTypeNodeFeature, learn, learnParameters, learnParameters, predict, sample, sample, setBnLearningAlgs, setCtbnLearningAlgs, setInitialStructure, toString, update, updateBridgeAndFeatureSubgraph
Methods inherited from class es.upm.fi.cig.multictbnc.models.AbstractPGM
addNodes, computeSufficientStatistics, display, display, display, getAdjacencyMatrix, getDataset, getIndexNodes, getIndexOfNode, getNamesNodesByIndex, getNameVariables, getNodeByIndex, getNodeByName, getNodeClass, getNodeFactory, getNodeIndexer, getNumNodes, getParameterLearningAlg, getStructureConstraints, getStructureLearningAlg, initialiseModel, isStructureLegal, learn, learn, learn, learnParameters, learnParameters, learnParameters, learnParameters, removeAllEdges, removeAllNodes, saveGraph, setDataset, setNameVariables, setParameterLearningAlgorithm, setStructure, setStructure, setStructure, setStructureConstraints, setStructureLearningAlgorithm, setStructureModifiedNodes
-
Constructor Details
-
Empty_maxK_MultiCTBNC
public Empty_maxK_MultiCTBNC(BNLearningAlgorithms bnLearningAlgs, CTBNLearningAlgorithms ctbnLearningAlgs, int maxK, Class<NodeTypeBN> bnNodeClass, Class<NodeTypeCTBN> ctbnNodeClass) Constructs aEmpty_maxK_Multi-CTBNC
by receiving the learning algorithms for Bayesian networks and continuous-time Bayesian networks and the maximum number of parents of the features (apart of the class variables).- Parameters:
bnLearningAlgs
- parameter and structure learning algorithms for Bayesian networksctbnLearningAlgs
- parameter and structure learning algorithms for continuous-time Bayesian networksmaxK
- maximum number of parents the nodes of feature variables can have (without including nodes of class variables)bnNodeClass
- Bayesian network node typectbnNodeClass
- continuous-time Bayesian network node type
-
-
Method Details
-
getHyperparameters
Description copied from class:AbstractPGM
Returns the hyperparameters of the model the user sets.- Overrides:
getHyperparameters
in classAbstractPGM<Node>
- Returns:
a Map
with the hyperparameters
-
getStructureConstraintsBN
Description copied from class:MultiCTBNC
Returns the structure constraints for the BN.- Overrides:
getStructureConstraintsBN
in classMultiCTBNC<NodeTypeBN extends Node,
NodeTypeCTBN extends Node> - Returns:
- a
StructureConstraint
-
getStructureConstraintsCTBN
Description copied from class:MultiCTBNC
Returns the structure constraints for the CTBN.- Overrides:
getStructureConstraintsCTBN
in classMultiCTBNC<NodeTypeBN extends Node,
NodeTypeCTBN extends Node> - Returns:
- a
StructureConstraint
-
getModelIdentifier
Description copied from interface:PGM
Returns aString
that identifies the model.- Specified by:
getModelIdentifier
in interfacePGM<NodeTypeBN extends Node>
- Overrides:
getModelIdentifier
in classMultiCTBNC<NodeTypeBN extends Node,
NodeTypeCTBN extends Node> - Returns:
String
that identifies the model
-
getType
Description copied from interface:PGM
Provides the type of PGM.- Specified by:
getType
in interfacePGM<NodeTypeBN extends Node>
- Overrides:
getType
in classMultiCTBNC<NodeTypeBN extends Node,
NodeTypeCTBN extends Node> - Returns:
- string describing the type of PGM
-